www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Polynome, zwei komp. Variablen
Polynome, zwei komp. Variablen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome, zwei komp. Variablen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:56 Sa 23.04.2011
Autor: Reticella

Aufgabe
p(x,y)=[mm]\sum_{k,l=0}^{N}a_{kl}x^ky^k [/mm]  Polynom in zwei Variablen gegeben, wobei N [mm]\in\IN [/mm], [mm] a_{kl} \in \IC [/mm].

Zu zeigen: es gibt ein Polynom q in zwei Variablen mit [mm]p(x,y)=q(z,\overline{z} [/mm]) für alle  [mm] z=x+iy \in \IC [/mm].



Also ich würde wie folgt ansetzen:

Es gilt ja [mm]x=\frac{1}{2}(z+\overline{z}) [/mm] und [mm]y=\frac{1}{2}i(\overline{z} -z)[/mm]. Das heißt, es gilt:

[mm]p(x,y)=p(\frac{1}{2}(z+\overline{z}),\frac{1}{2}i(\overline{z} -z))[/mm].

Dies müsste ich doch jetzt als [mm]q(z,\overline{z}) [/mm] scheiben können, da die Koeffizienten ja komplex sein dürfen...
Ich weiß nur nicht, wie ich das richtig begründe/beweise...

Kann mir da jemand helfen oder einen Tipp geben?

Vielen Dank im Vorraus,
Reticella


        
Bezug
Polynome, zwei komp. Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 23.04.2011
Autor: rainerS

Hallo!

> p(x,y)=[mm]\sum_{k,l=0}^{N}a_{kl}x^ky^k[/mm]  Polynom in zwei
> Variablen gegeben, wobei N [mm]\in\IN [/mm], [mm]a_{kl} \in \IC [/mm].
>  
> Zu zeigen: es gibt ein Polynom q in zwei Variablen mit
> [mm]p(x,y)=q(z,\overline{z} [/mm]) für alle  [mm]z=x+iy \in \IC [/mm].
>  
>
> Also ich würde wie folgt ansetzen:
>  
> Es gilt ja [mm]x=\frac{1}{2}(z+\overline{z})[/mm] und
> [mm]y=\frac{1}{2}i(\overline{z} -z)[/mm]. Das heißt, es gilt:
>  
> [mm]p(x,y)=p(\frac{1}{2}(z+\overline{z}),\frac{1}{2}i(\overline{z} -z))[/mm].
>  
> Dies müsste ich doch jetzt als [mm]q(z,\overline{z})[/mm] scheiben
> können, da die Koeffizienten ja komplex sein dürfen...
>  Ich weiß nur nicht, wie ich das richtig
> begründe/beweise...
>  
> Kann mir da jemand helfen oder einen Tipp geben?

Zwei Ideen: 1. Du könntest es mit Induktion über N beweisen. 2. Beweise die Aussage zunächst für spezielle Polynome der Form [mm] $x^ky^l$ [/mm] (z.B. mit binomischer Formel).

Viele Grüße
   Rainer

Bezug
                
Bezug
Polynome, zwei komp. Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 23.04.2011
Autor: Reticella


Ich habs jetzt mehrfach mit Induktion versuch, aber irgendwie führt das zu nichts. Im Induktionsschritt vermehren sich die Terme ja enorm, was die Sache nicht gerade einfacher macht.

Ich würde jetzt einfach meine umgerechneten x und y (welche ja von z und [mm] \overline{z}[/mm] abhängen) in p(x,y) einsetzen. Man sieht dann ja, wenn man einige Terme ausrechnet (is ja auch iwie klar) das nur Potenzen von z und [mm] \overline{z}[/mm] rauskommen^^. Das man dann die Koeffizienten von gleichen Potenzen zusammenfasst erhält man ja dan q(z,[mm] \overline{z}[/mm]). Das sollte doch eigentlich reichen?? Ich soll q ja nicht angeben...

Aber wirklich schön ist das nicht (und irgendwie kommt mir das ein bisschen zu einfach vor)...Hat jemand noch eine Idee wie es besser geht?



Bezug
                        
Bezug
Polynome, zwei komp. Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mo 25.04.2011
Autor: rainerS

Hallo!

>
> Ich habs jetzt mehrfach mit Induktion versuch, aber
> irgendwie führt das zu nichts. Im Induktionsschritt
> vermehren sich die Terme ja enorm, was die Sache nicht
> gerade einfacher macht.
>  
> Ich würde jetzt einfach meine umgerechneten x und y
> (welche ja von z und [mm]\overline{z}[/mm] abhängen) in p(x,y)
> einsetzen. Man sieht dann ja, wenn man einige Terme
> ausrechnet (is ja auch iwie klar) das nur Potenzen von z
> und [mm]\overline{z}[/mm] rauskommen^^. Das man dann die
> Koeffizienten von gleichen Potenzen zusammenfasst erhält
> man ja dan q(z,[mm] \overline{z}[/mm]). Das sollte doch eigentlich
> reichen?? Ich soll q ja nicht angeben...

Im Prinzip ja.

Mach doch das, was ich dir vorgeschlagen habe: weise es erst einmal für den einfachsten Fall [mm] $x^ky^l$ [/mm] nach. Da kannst du sogar direkt per binomischem Lehrsatz das Polynom angeben, das herauskommt.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]