www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - konstante Funktionen
konstante Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konstante Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Di 02.12.2008
Autor: TTaylor

Aufgabe
Es sei f: E->C eine holomorphe Funktion mit der Eigenschaft f(z)=f(z²) für alle z Element E=Einheitskreis. Zeige, dass f konstant ist.

Hallo erstmal,

bei dieser Aufgabe weiß ich, dass ich den Identitätssatz anwenden soll.
Aber ich weiß nicht wie. Vielleicht könnt ihr mir weiterhelfen.

Grüße TTaylor

        
Bezug
konstante Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Di 02.12.2008
Autor: fred97

Es ist f'(z) = [mm] 2zf'(z^2), [/mm] also f'(0) = 0

Differenziere nochmal, setzte z=0 und Du siehst f''(0) = 0.


Also zeige induktiv: [mm] f^{(n)}(0) [/mm] = 0 für alle n in [mm] \IN [/mm]

Reicht das ?

FRED

Bezug
        
Bezug
konstante Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 02.12.2008
Autor: fred97

Eine weitere Möglichkeit:

f(1/2) = [mm] f(\bruch{1}{4}) [/mm] =  [mm] f(\bruch{1}{16}) [/mm] = [mm] f(\bruch{1}{(16)^2}) [/mm] = .......

Jetzt Identitätssatz


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]