Vorhilfe - Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen
URL: http://mathebank.de/vorkurszettel?id=19


Dipl. math. Felix Fontein
Dipl. math. Dieter Osterholz
www.matheraum.de
Algebra-Training 2006
Aufgabenblatt 6
Abgabe: Fr 10.07.2009 15:00
17.11.2006
Es werden insgesamt 6 Aufgaben.
Aufgabe 1
Man führe die in Satz 4 beschriebene Division mit Rest im Polynomring $ \IZ[X] $ in folgenden Fällen explizit durch:

(i) f = $ 3X^{5} $ + $ 2X^{4} $ - $ X^{3} $ + $ 3X^{2} $ - 4X + 7, g = $ X^{2} $ - 2X + 1

(ii) f = $ X^{5} $ + $ X^{4} $ - $ 5X^{3} $ + $ 2X^{2} $ + 2X -1, g = $ X^{2} $ - 1
Aufgabe 2
Sei K ein Körper und g $ \in $ K[X] ein Polynom einer Variablen vom Grad d > 0. Man beweise die Existenz der sogenannten g-adischen Entwicklung: Zu f $ \in $ K[X] gibt es eindeutig bestimmte Polynome $ a_{0}, a_{1} $ ... $ \in $ K[X] vom Grad < d, $ a_{i} $ = 0 für fast alle i, mit f = $ \summe_{i}{}a_{i}g^{i}. $

Aufgabe 3
Es sei R ein Ring, der ein nilpotentes Element a $ \not= $ 0 enthalte; nilpotent bedeutet, daß es ein n $ \in \IN $ mit $ a^{n} $ = 0 gibt. Man zeige, daß die Einheitengruppe R* eine echte Untergruppe der Einheitengruppe (R[X])* ist.

Aufgabe 4
Man bestimme den kleinsten Unterring von $ \IR, $ welcher $ \IQ $ und $ \wurzel{2} $ enthält, und zeige, daß dieser bereits ein Körper ist.


© Copyright 2003-24 www.mathebank.de
Der Inhalt dieser Seite kann -- sofern nicht anders lautend gekennzeichnet -- durch jedermann gemäß den Bestimmungen der Lizenz für Freie Inhalte genutzt werden.