glatte Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweise Sie, dass die Gleichung
[mm] ln(x+y+g(x,y)-2)e^x^+^y-2x+y+g(x,y)=0 [/mm] und g(1,1)=1
eine Funktion [mm] (x,y)\mapsto [/mm] g(x,y) erklärt wird, die in einer Umgebung des Punktes [mm] (1,1)\in\IR^2 [/mm] definiert und dort glatt ist.
Berechnen Sie die Ableitung von g im Punkt (1,1) in Matrixdarstellung. |
Guten Abend,
mir geht es eigentlich erst mal nur um den ersten Teil der Aufgabe und zwar, dass man zeigen soll, dass die Funktion glatt ist.
Der gesamte Übungszettel ist gerade nur eine Art Übergangszettel und deswegen haben wir in unserem Skript nicht stehen, was "glatt" bedeutet. Trotzdem werden die Aufgaben natürlih gewertet.
Im Internet habe ich jetzt herausefunden, dass wenn eine Funktion glatt ist, sie unendlich differenzierbar ist.
Allerdings weiß ich dadurch trotzdem leider nicht, wie man das beweist, da ich leider im Internet keinen Algorithmus oder etwas in der Art gefunden habe.
Ich hoffe, dass ihr mir bei dieser Aufgabe helfen könnt.
Lieben Gruß
Katti1712
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:54 Sa 16.01.2016 | Autor: | fred97 |
> Beweise Sie, dass die Gleichung
> [mm]ln(x+y+g(x,y)-2)e^x^+^y-2x+y+g(x,y)=0[/mm] und g(1,1)=1
> eine Funktion [mm](x,y)\mapsto[/mm] g(x,y) erklärt wird, die in
> einer Umgebung des Punktes [mm](1,1)\in\IR^2[/mm] definiert und dort
> glatt ist.
> Berechnen Sie die Ableitung von g im Punkt (1,1) in
> Matrixdarstellung.
> Guten Abend,
>
> mir geht es eigentlich erst mal nur um den ersten Teil der
> Aufgabe und zwar, dass man zeigen soll, dass die Funktion
> glatt ist.
> Der gesamte Übungszettel ist gerade nur eine Art
> Übergangszettel und deswegen haben wir in unserem Skript
> nicht stehen, was "glatt" bedeutet. Trotzdem werden die
> Aufgaben natürlih gewertet.
> Im Internet habe ich jetzt herausefunden, dass wenn eine
> Funktion glatt ist, sie unendlich differenzierbar ist.
> Allerdings weiß ich dadurch trotzdem leider nicht, wie man
> das beweist, da ich leider im Internet keinen Algorithmus
> oder etwas in der Art gefunden habe.
>
> Ich hoffe, dass ihr mir bei dieser Aufgabe helfen könnt.
Satz über implizit def. Funktionen
Fred
>
> Lieben Gruß
>
> Katti1712
|
|
|
|