Abbildungsmatrizen ähnlich ? < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist das R ein Körper ist und W ein endl. K-VR.
Weiter seien zwei Endomorphismen [mm] \alpha ,\beta [/mm] gegeben.
Zu zeigen ist, dass das char. Polynom von [mm] \alpha [/mm] * [mm] \beta [/mm] das gleiche ist wie von [mm] \beta [/mm] * alpha. |
Also ich wollte das über die dazugehörigen Abbildungsmatrizen A( Abbildungsmatrix bzgl. [mm] \alpha) [/mm] B ( Abbildungsmatrix bzgl. [mm] \beta) [/mm] ( beide bzgl. der geord. Standartbasis) machen. Sodass dann AB ( die Abb.matrix bzdl [mm] \alpha [/mm] * [mm] \beta [/mm] ) und BA ( die Abb.matrix bzgl. [mm] \beta [/mm] * alpha ist).
Für den Fall das einer der beiden Matrizen A,B invertierbar ist, ist die Sache klar.
Allerdings besteht ja die Möglichkeit das beide nicht invertierbar sind. Da habe ich mir überlegt das über Ähnlichkeit ( Äquivalenz) von Matrizen zu machen, denn ähnliche Matrizen besitzen ja das gleiche char. Polynom.
Allerding ist mir nicht ganz klar ob und warum die Matrizen zueinanderähnlich sein sollen.
Wenn sie ähnlich wären, müsste ja (BA)= S*(AB)*S^(-1) (wobei S eine invertierbare Matrix ist ) gelten. Aber wie zeig ich das.
Wäre nett wenn mir jemand helfen könnte.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:52 So 07.06.2015 | Autor: | hippias |
Ich habe einen Ansatz, mit dem ich die Behauptung aber nicht vollstaendig beweisen kann. Trotzdem glaube ich, dass er in die richtige Richtung weist und vielleicht gelingt es Dir ja die Luecke zu schliessen.
Ich versuche zu $x:= [mm] \alpha\beta$ [/mm] und zu $y:= [mm] \beta\alpha$ [/mm] je eine Basen zu konstruieren, in der beide Endomorphismen gleiche Matrixdarstellung beisitzen. Dann folgt sofort die Behauptung.
Ich benutze:
Sei $V$ ein endlichdimensionaler $K$-VR und [mm] $\phi\in End_{K}(V)$ [/mm] mit Minimalpolynom $f$. Seien [mm] $\pi_{i}$ [/mm] die normierten irreduziblen Teiler von $f$. Sei [mm] $e_{i}\in \IN$ [/mm] so, dass [mm] $\pi_{i}^{e_{i}}\vert [/mm] f$, aber [mm] $\pi_{i}^{e_{i}+1}\not\vert [/mm] f$. Setze [mm] $U_{i}:= [/mm] Kern [mm] \pi_{i}^{e_{i}}(f)$. [/mm] Dann ist $V= [mm] \oplus U_{i}$ [/mm] eine Zerlegung von $V$ in [mm] $\phi$-invariante [/mm] Unterraeume.
Dieses Lemma bewog mich Polynome von $x$ und $y$ zu betrachten.
Es sei $p$ ein Polynom ueber $K$. Dann ist [mm] $Kernp(x)\alpha\leq [/mm] Kernp(y)$. Im Fall [mm] $p(0)\neq [/mm] 0$ vermittelt [mm] $\alpha$ [/mm] einen Isomorphismus zwischen den beiden Raeumen. Ist also $B$ eine $K$-Basis von $Kernp(x)$, so [mm] $B\alpha$ [/mm] eine $K$-Basis von $Kernp(y)$ und es gilt, dass die Matrixdarstellung von $x$ bezueglich $B$ gleich der Matrixdarstellung von $y$ bezueglich [mm] $B\alpha$ [/mm] ist.
Leider sehe gerade nicht, wie ich im Fall $p(0)=0$ vorzugehen habe, also den nilpotenten Anteil von $x$ zu behandeln habe. Vielleicht ist es ganz einfach, aber vielleicht auch eine Sackgasse.
|
|
|
|
|
Ersteinmal dankeschön.
In die Richtung hab ich noch gar nicht gedacht.
Für den Fall ungleich 0 ist das alles recht nachvollziehbar.
Allerdings ist auch mit noch kein schlüßiger Beweis für gleich 0 eingefalle.
Vielleicht findet sich ja noch jemand der eine Möglichkeit sieht wie ich dies zeigen könnte.
LG
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:36 So 07.06.2015 | Autor: | hippias |
Bisher wurde gezeigt, dass die charakteristischen Polynome gleiche irreduzible Teiler mit gleichen Exponenenten haben, sofern diese [mm] $\neq [/mm] t$ sind. Da die charakteristischen Polynome aber gleichen Grad haben, muessen auch die Potenzen dieses verbleibenden irreduziblen Teilers uebereinstimmen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:40 Mo 08.06.2015 | Autor: | fred97 |
Hier
http://de.wikipedia.org/wiki/Charakteristisches_Polynom
findest Du unter "Eigenschaften" das Gewünschte.
FRED
|
|
|
|