Abelsche Gruppe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir sollen feststellen, ob [mm] (\IR,\otimes) [/mm] eine abelsche Gruppe ist, wobei die Verknüpfung durch [mm] a\otimes [/mm] b:=a+b-8 definiert ist. |
hallo ihr lieben! kenne zwar die gruppenaxiome und weiß, dass alle vier gruppenaxiome (assoziativität, einelement, inverses, kommutativität) gelten müssen, damit die gegebene gruppe abelsch ist. leider weiß ich nicht, wie ich das beweisen kann. schon allein , weil mich die definition der verknüpfung verwirrt. wie zeige ich also dass die gruppenaxiome gelten??
Danke!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:19 Mi 15.04.2009 | Autor: | maxi85 |
Hey,
letztendlich muss du es einfach immer wieder nachrechnen für die regeln die du eben schon genannt hast. ich machs dir mal für assoziativität vor, dann fällt dir der rest hoffentlich wie schuppen von den augen.
$ [mm] a\otimes [/mm] $ b:=a+b-8
zu Zeigen: (a [mm] \otimes [/mm] b ) [mm] \otimes [/mm] c = a [mm] \otimes [/mm] ( b [mm] \otimes [/mm] c)
(a [mm] \otimes [/mm] b ) [mm] \otimes [/mm] c = ( a + b - 8 ) [mm] \otimes [/mm] c = ( a + b - 8 ) + c - 8 = ( wegen komm. in [mm] \IR) [/mm] = a + b + c - 8 - 8 = ( wegen komm. in [mm] \IR) [/mm] a + ( b + c - 8) - 8 = a [mm] \otimes [/mm] ( b + c - 8) = a [mm] \otimes [/mm] ( b [mm] \otimes [/mm] c)
wenn dus ganz geneu nimmst hab ich in [mm] \IR [/mm] noch 1-2 schritte vergessen, aber so müsste es trotzdem aussehen.
ich hoffe du kommst damit bei den anderen sachen weiter, wenn nicht frag einfach wieder nach.
mfg die Maxi
|
|
|
|
|
hallo maxi!
danke für deine antwort!
leider hab ich noch einige fragen....also
(a $ [mm] \otimes [/mm] $ b ) $ [mm] \otimes [/mm] $ c = ( a + b - 8 ) $ [mm] \otimes [/mm] $ c = ( a + b - 8 ) + c - 8
wo kommt denn da die -8 nach dem c her?
= ( wegen komm. in $ [mm] \IR) [/mm] $ = a + b + c - 8 - 8 = ( wegen komm. in $ [mm] \IR) [/mm] $ a + ( b + c - 8) - 8 = a $ [mm] \otimes [/mm] $ ( b + c - 8)
und wieso verschwindet die 8 hier wieder?
= a $ [mm] \otimes [/mm] $ ( b $ [mm] \otimes [/mm] $ c)
und kann ich als einselement ganz einfach die 1 verwenden?
leider hab ich trotzdem keine idee, wie der beweis für das einselement aussehen soll...:-(
|
|
|
|
|
Hallo,
du musst die Verknüpfung [mm] \otimes [/mm] der Gruppe jeweils durch die Definition ersetzen. Da es definiert wird über die "normale" Addition und Subtraktion, kannst du in dem Moment, wo du die Ersetzung gemacht hast, "ganz normal" rechnen, z.B. für die Kommutativität:
a [mm] \otimes [/mm] b
= a + b - 8 (nach Definition der Verknüpfung)
= b + a - 8 (weil du in [mm] \IR [/mm] mit den Standardverknüpfungen "alles" darfst)
= b [mm] \otimes [/mm] a (nach Definition der Verknüpfung)
Assoziativgesetz:
(a [mm] \otimes [/mm] b) [mm] \otimes [/mm] c
= (a + b - 8) [mm] \otimes [/mm] c (Definition einmal benutzt)
= (a + b - 8) + c - 8 (Definition nochmal benutzt für Klammer [mm] \otimes [/mm] c)
= a + (b + c - 8) - 8 (in [mm] \IR [/mm] mit Standardverknüpfungen darf man "alles" vertauschen)
= a [mm] \otimes [/mm] (b + c - 8) (Definiton benutzt für a [mm] \otimes [/mm] Klammer)
= a [mm] \otimes [/mm] (b [mm] \otimes [/mm] c) (Definition innerhalb der Klammer benutzt)
Neutrales Element:
Gesucht ist ein Element, das du mit einem beliebigen anderen verknüpfen kannst, so dass das Element selbst wieder rauskommt, d.h. dieses Element e soll folgendes können: a [mm] \otimes [/mm] e = a für alle a [mm] \in \IR.
[/mm]
a [mm] \otimes [/mm] e = a + e - 8 soll also wieder a ergeben, d.h.
a + e - 8 = a
somit e = 8.
Inverses Element:
Gesucht ist zu jedem Element a ein anderes, so dass die Verknüpfung der Beiden das neutrale Element ergeben, d.h. es soll gelten: a [mm] \otimes \overline{a} [/mm] = 8, weil 8 das neutrale Element ist.
also: a [mm] \otimes \overline{a} [/mm] = a + [mm] \overline{a} [/mm] - 8 = 8
und damit [mm] \overline{a} [/mm] = 16 - a.
Wenn du also jetzt rechnest:
a [mm] \otimes [/mm] (16 - a) = a + 16 - a - 8 = 8, so bekommst du das neutrale Element.
Streng genommen musst du als erstes noch die Abgeschlossenheit der Gruppe überprüfen, d.h. wenn du zwei Elemente nimmst und die verknüpfst, muss auch wieder ein Element aus der Gruppe herauskommen - das ist aber in diesem Fall klar, weil es sich nur um reelle Zahlen dreht.
Das ist jetzt schon praktisch eine Lösung... ich hoffe aber, dass es trotzdem auch eine Hilfe ist.
Gruß,
Martin
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:16 Mi 15.04.2009 | Autor: | FraeuleinM |
hey!
jetzt ist es mir klar! das heißt also dass ich das kommutativgesetz so nachweisen kann:
zu zeigen: a [mm] \otimes [/mm] b=b [mm] \otimes [/mm] a
a+b-8=b+a-8. da das stimmt, sit die gruppe auch kommutativ.
danke danke danke
|
|
|
|