www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abstand Gerade zu Ebene
Abstand Gerade zu Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Gerade zu Ebene: Punktbestimmung bei gg Abstand
Status: (Frage) beantwortet Status 
Datum: 12:41 Sa 21.04.2007
Autor: kermit

Aufgabe
Gegen sind die Ebene E: [mm] \vektor{1 \\ -2 \\ 2} \vec{x} [/mm] = 3 und die Gerade  g: [mm] \vec{x} [/mm] = [mm] \vektor{11 \\ -15 \\ 8} [/mm] + [mm] \lambda \vektor{4 \\ -5 \\ 2} [/mm]

a) Bestimme alle Punkte P, die auf g liegen und von E den Abstand 6 haben.
b) Bestimme denjenigen Punkt Q auf E, der vom Koordinatenursprung den min. Abstand hat.
c) Bestimme denjenigen Punkt R von g, der vom Koordinatenursprung min. Abstand hat.

So erstmal ein schönen guten Morgen.

Zu a:
Ich hab die Ebene in die Hessesche Normalform eingesetz und diese dann gleich 6 gesetzt. Dann für x die gerade eingesetzt, lambda erechnet und den Punkt ausgerechnet. Aber da ist das Problem: Laut Lösungsbuch müssen es zwei Punkte sein, und außerdem ein völlig anderer als ich errechnet habe.

Zu b und c ist mir nichts eingefallen, also bitte bitte Hilfe

Danke schonmal im vorraus

Kermit

        
Bezug
Abstand Gerade zu Ebene: zu a
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Sa 21.04.2007
Autor: schlafmuetze

Um beide Punkte zu errechnen, musst du die Hessche Normalform nicht gleich sondern den Betrag der Hesschen Normalform. als lamda hätte cih dann -4 bzw. -2 raus.

Bezug
                
Bezug
Abstand Gerade zu Ebene: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:41 Sa 21.04.2007
Autor: kermit

Aufgabe
gleich Frage, zu Aufgabe 3 a)

Hey danke für die Antwort, aber ich kann damit nicht soviel anfangen, kannst du vielleicht deine Rechnung aufschreiben damit ich das mit meiner vergleichen kann um meinen Fehler zu finden.

Danke :)

Bezug
                        
Bezug
Abstand Gerade zu Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Sa 21.04.2007
Autor: VNV_Tommy

Hallo Karsten!

> gleich Frage, zu Aufgabe 3 a)
>  Hey danke für die Antwort, aber ich kann damit nicht
> soviel anfangen, kannst du vielleicht deine Rechnung
> aufschreiben damit ich das mit meiner vergleichen kann um
> meinen Fehler zu finden.
>  
> Danke :)

Besser wäre es, wenn du deine Rechnung präsentierst, damit wir sehen, wo dein Fehler liegt.

Gruß,
Tommy


Bezug
                                
Bezug
Abstand Gerade zu Ebene: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:53 Sa 21.04.2007
Autor: kermit

Aufgabe
gut ich versuch das mal zu ordnen ist ziemlich wirr was ich geschrieben hatte

Gerechnet hab ich:

1/3 * [mm] \vektor{1 \\ -2 \\ 2} [/mm] * [mm] [\vektor{11 \\ -15 \\ 8} [/mm] + [mm] \lambda \vektor{4 \\ -5 \\2} [/mm] -3] = 6

sprich der Normaleneinheitsvektor, dann die Gerade, dann der Abstand zum Ursprung und der gewünschte Abstand.

Bezug
                                        
Bezug
Abstand Gerade zu Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 21.04.2007
Autor: schlafmuetze


> gut ich versuch das mal zu ordnen ist ziemlich wirr was ich
> geschrieben hatte
>  Gerechnet hab ich:
>  

1/3 * [mm]\vektor{1 \\ -2 \\ 2}[/mm] * [mm][\vektor{11 \\ -15 \\ 8}[/mm] +

> [mm]\lambda \vektor{4 \\ -5 \\2}[/mm] -3] = 6
>  
> sprich der Normaleneinheitsvektor, dann die Gerade, dann
> der Abstand zum Ursprung und der gewünschte Abstand.

So ähnlich habe ich das auch gemacht, nur fehlen wieder die Betragsstriche bei dir und du hast den Ortsvektor nicht ordentlich bestimmt, du musst anstatt der -3 einen Vektor suchen, der die Ebenengleichung bestimmt. Ich habe zum Beispiel [mm]\vektor{3 \\ 1 \\ 1}[/mm] berechnet.
Dann sieht dei Gleichung so aus, mit der habe ich meine Lösungen berechnet:


|1/3 * [mm]\vektor{1 \\ -2 \\ 2}[/mm] * [mm][\vektor{11 \\ -15 \\ 8}[/mm] + [mm]\lambda \vektor{4 \\ -5 \\2}[/mm] -[mm]\vektor{3 \\ 1 \\ 1}[/mm] ]| = 6

Das habe ich dann gelöst. Fallunterscheidung nicht vergessen!
Hoffe das hilft, ansonsten musst du deinen Lösungsweg mal aufschreiben.

Bezug
                                                
Bezug
Abstand Gerade zu Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 So 22.04.2007
Autor: kermit

Gut, jetzt hab ich verstanden, was du mit den Beträgen gemeint hast, danke :)

Aber das mit dem Ortsvektor... Mein LK Lehrer hat das so erklärt, dass in der HNF an der Stelle der Ortsvektor mit dem Normalvektor multipliziert werden muss und da kommt bei mir -3 raus, ich versteh net so ganz was du mit dem "der die Ebene bestimmt meinst"

Vielleicht hab ich irgendwo nen Denkfehler ;)

Bezug
                                        
Bezug
Abstand Gerade zu Ebene: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 23.04.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Abstand Gerade zu Ebene: zu b
Status: (Antwort) fertig Status 
Datum: 13:23 Sa 21.04.2007
Autor: schlafmuetze

Hier solltest du eine Gerade aufstellen, die durch den Ursprung geht und senkrecht auf der Ebene steht (Normalenvektor der Ebene als Richtungsvektor der Geraden) und daraus den Schnittpunkt bestimmen. DAnn hast du den Punkt.

Bezug
        
Bezug
Abstand Gerade zu Ebene: zu c.
Status: (Antwort) fertig Status 
Datum: 14:29 Sa 21.04.2007
Autor: angela.h.b.


> Gegen sind die Ebene E: [mm]\vektor{1 \\ -2 \\ 2} \vec{x}[/mm] = 3
> und die Gerade  g: [mm]\vec{x}[/mm] = [mm]\vektor{11 \\ -15 \\ 8}[/mm] +
> [mm]\lambda \vektor{4 \\ -5 \\ 2}[/mm]
>  
>
>  c) Bestimme denjenigen Punkt R von g, der vom
> Koordinatenursprung min. Abstand hat.

Hallo

hier kannst Du verarbeiten, daß der Ortsvektor [mm] \vektor{x \\ y\\z} [/mm] des gesuchten Punktes senkrecht zum Richtungvektor der Geraden ist, und daß es ein [mm] \lambda [/mm] gibt mit

[mm] \vektor{x \\ y\\z}=[/mm] [mm]\vektor{11 \\ -15 \\ 8}[/mm] + [mm]\lambda \vektor{4 \\ -5 \\ 2}[/mm].

Das liefert Dir 4 Gleichungen mit 4 Unbekannten, die Du lösen mußt.

Gruß v. Angela


Bezug
                
Bezug
Abstand Gerade zu Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Sa 21.04.2007
Autor: riwe

oder schneide g mit der ebene 4x - 5y + 2z = 0,
dann hast du den punkt R

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]