www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Banachräume
Banachräume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Fr 16.09.2011
Autor: Annyy

Aufgabe
Definition: ist die von (X,||.||) erzeugte Metrik vollständig, so heißt der normierte Raum Banachraum.

Hallo!
Bin grad dabei, mein Ana2-Skriptum durchzuarbeiten und hab leider mein Ana1-Skript nicht bei mir, und jetzt häng ich schon bei einfachsten Definitionen.
Also:
Definition: ist die von (X,||.||) erzeugte Metrik vollständig, so heißt der normierte Raum Banachraum.

Was ist nun die genaue Definition einer vollständigen Metrik und was unterscheidet sie von einer unvollständigen Metrik?

        
Bezug
Banachräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Fr 16.09.2011
Autor: kamaleonti

Hallo Annyy,

> Definition: ist die von (X,||.||) erzeugte Metrik
> vollständig, so heißt der normierte Raum Banachraum.
>  Hallo!
>  Bin grad dabei, mein Ana2-Skriptum durchzuarbeiten und hab
> leider mein Ana1-Skript nicht bei mir, und jetzt häng ich
> schon bei einfachsten Definitionen.
>  Also:
>  Definition: ist die von (X,||.||) erzeugte Metrik
> vollständig, so heißt der normierte Raum Banachraum.
>  
> Was ist nun die genaue Definition einer vollständigen
> Metrik und was unterscheidet sie von einer unvollständigen Metrik?

Eine Metrik d bzw. ein mit der Metrik d versehener Raum X heißt vollständig genau dann, wenn jede Cauchyfolge in X bezüglich der Metrik d gegen ein Element [mm] x\in [/mm] X konvergiert.

Beispiele (vollständige Räume): [mm] \IR, \IC, \IR^n [/mm] mit euklidischer Metrik, [mm] \ldots [/mm]

Beispiele (unvollständige Räume): das Intervall (0,1) mit euklidischer Metrik, [mm] \IR [/mm] mit Metrik [mm] d(x,y):=|\arctan(x)-\arctan(y)|. [/mm]



LG

Bezug
                
Bezug
Banachräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Fr 16.09.2011
Autor: Annyy

danke für die rasche antwort!
diese definition kommt mir bekannt vor :)
jedoch hab ich ein verständnisproblem, wie eine cauchyfolge bezüglich einer metrik konvergieren kann? für eine metrik brauch ich ja immer 2 elemente, zb bei der euklidischen metrik [mm] \wurzel{\summe_{j=1}^{p}|xj-yj|^{2} } [/mm]
ein vollständiger raum ist ja, wenn jede cauchyfolge gegen ein element des raums konvergiert.
wie kann ich mir das vorstellen, dass eine cauchyfolge bzgl einer metrik konvergiert?

Bezug
                        
Bezug
Banachräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Fr 16.09.2011
Autor: rainerS

Hallo!

> danke für die rasche antwort!
>  diese definition kommt mir bekannt vor :)
>  jedoch hab ich ein verständnisproblem, wie eine
> cauchyfolge bezüglich einer metrik konvergieren kann? für
> eine metrik brauch ich ja immer 2 elemente, zb bei der
> euklidischen metrik [mm]\wurzel{\summe_{j=1}^{p}|xj-yj|^{2} }[/mm]

Ja, so steht es auch in der Definition der Konvergenz in metrischen Räumen: eine Folge [mm] $(x_n)$ [/mm] konvergiert bezüglich der Metrik d gegen x, wenn es zu jedem [mm] $\varepsilon [/mm] >0$ ein [mm] $N\in\IN$ [/mm] gibt, sodass

  [mm] d(x_n,x) < \varepsilon [/mm] für alle $n >N$.

Wenn die Metrik von einer Norm [mm] $\|\cdot\|$ [/mm] induziert wird, so ist [mm] $d(x_n,x) [/mm] = [mm] \|x_n-x\|$ [/mm] .

> ein vollständiger raum ist ja, wenn jede cauchyfolge gegen
> ein element des raums konvergiert.
>  wie kann ich mir das vorstellen, dass eine cauchyfolge
> bzgl einer metrik konvergiert?

Für eine Cauchyfolge gilt, dass es zu jedem [mm] $\varepsilon [/mm] >0$ ein [mm] $N\in\IN$ [/mm] gibt, sodass

  [mm] d(x_n,x_m)< \varepsilon [/mm] für alle $n,m >N$.

Die Metrik in einem Banachraum ist per Definition von einer Norm induziert, sodass du dort immer $d(x,y) [mm] =\|x-y\|$ [/mm] schreiben kannst.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]