www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis eines Vektorraumes
Basis eines Vektorraumes < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Vektorraumes: Tipps
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 22.03.2012
Autor: Mathegirl

Aufgabe
[mm] {(x_1,x_2,x_3)\in \IR^3: x_1+3x_2+2x_4=0 und 2x_1+x_2+x_3=0} [/mm]

Bestimme eine Basis!

Also Lösung habe ich die möglichen Basen:

[mm] v_1=(3,-1,-5,0) [/mm]
[mm] v_2=(-1,1,1,-1) [/mm]

Wie kommt man darauf?
Ich habe folgendes LGS gebildet und versucht zu lösen:

[mm] \pmat{ 1 & 3 & 0 & 4 \\ 2 & 1 & 1 & 0 } [/mm] -> [mm] \pmat{ 1 & 3 & 0 & 4 \\ 0 & -5 & 1 & -8 } [/mm]

Hier sind 2 freie Parameter:
[mm] x_4=a [/mm]
[mm] x_3=b [/mm]

[mm] x_2=\bruch{b}{5}-\bruch{8}{5}a [/mm]

[mm] x_1=-\bruch{3}{5}b+\bruch{19}{5}a [/mm]

Dann einmal a=1 und b=0   und a=0 und b=1

Aber so erhalte ich nicht die Basen aus der Lösung.


MfG
Mathegirl

        
Bezug
Basis eines Vektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 22.03.2012
Autor: fred97


> [mm]{(x_1,x_2,x_3)\in \IR^3: x_1+3x_2+2x_4=0 und 2x_1+x_2+x_3=0}[/mm]
>  
> Bestimme eine Basis!
>  Also Lösung habe ich die möglichen Basen:
>  
> [mm]v_1=(3,-1,-5,0)[/mm]
>  [mm]v_2=(-1,1,1,-1)[/mm]
>  
> Wie kommt man darauf?
>  Ich habe folgendes LGS gebildet und versucht zu lösen:
>  
> [mm]\pmat{ 1 & 3 & 0 & 4 \\ 2 & 1 & 1 & 0 }[/mm] -> [mm]\pmat{ 1 & 3 & 0 & 4 \\ 0 & -5 & 1 & -8 }[/mm]
>  
> Hier sind 2 freie Parameter:
>  [mm]x_4=a[/mm]
>  [mm]x_3=b[/mm]
>  
> [mm]x_2=\bruch{b}{5}-\bruch{8}{5}a[/mm]
>  
> [mm]x_1=-\bruch{3}{5}b+\bruch{19}{5}a[/mm]
>  
> Dann einmal a=1 und b=0   und a=0 und b=1
>  
> Aber so erhalte ich nicht die Basen aus der Lösung.

1. Bei [mm] x_1 [/mm] hast Du Dich verrechnet.

2. Eine Basis eines Vektorraumes ist doch nicht eindeutig bestimmt !

FRED

>  
>
> MfG
>  Mathegirl


Bezug
                
Bezug
Basis eines Vektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Do 22.03.2012
Autor: Mathegirl

Danke, ich hab den Fehler bei [mm] x_1 [/mm] gefunden.

Aber das Vorgehen zur Bestimmung einer Basis ist soweit ok?


Dann habe ich noch eine Frage: Es soll eine Basis von
[mm] Lin(x^2,x^2+x,x^2+1,x^2+x+1,x^7+x^5)\in\IR[x] [/mm] gefunden werden.

Eine mögliche Basis ist:
[mm] B=(x^2,x^2+x,x^2+1,x^7+x^5) [/mm]

warum kann ich hier [mm] x^2+x+1 [/mm] weglassen?

Es muss gezeigt werden, dass Lineare Unabhängigkeit vorliegt.

[mm] X^7+x^5\in Lin(x^2,x^2+x,x^2+1) [/mm]

Warum gilt das?

[mm] a*x^2+b*(x^2+x)+c*(x^2+1)=0 [/mm]
[mm] (a+b+c)*x^2+b*x+c*1=0 [/mm]

a=b=c=0 also linear unabhängig.

(Muss ich immer Lineare Unabhängigkeit zeigen, wenn es darum geht eine Basis zu bestimmen??)


MfG
Mathegirl


Bezug
                        
Bezug
Basis eines Vektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Do 22.03.2012
Autor: Sigrid

Hallo Mathegirl

> Danke, ich hab den Fehler bei [mm]x_1[/mm] gefunden.
>  
> Aber das Vorgehen zur Bestimmung einer Basis ist soweit
> ok?
>  
>
> Dann habe ich noch eine Frage: Es soll eine Basis von
> [mm]Lin(x^2,x^2+x,x^2+1,x^2+x+1,x^7+x^5)\in\IR[x][/mm] gefunden
> werden.
>
> Eine mögliche Basis ist:
>  [mm]B=(x^2,x^2+x,x^2+1,x^7+x^5)[/mm]
>  
> warum kann ich hier [mm]x^2+x+1[/mm] weglassen?

Du kannst [mm] x^2+x+1 [/mm] als Linearkombination von [mm] x^2, x^2+x [/mm] und [mm] x^2+1 [/mm] darstellen. Findest Du die Kombination?

>  
> Es muss gezeigt werden, dass Lineare Unabhängigkeit
> vorliegt.
>  
> [mm]X^7+x^5\in Lin(x^2,x^2+x,x^2+1)[/mm]
>
> Warum gilt das?

Das gilt nicht. Deshalb musst Du ja [mm] x^5 [/mm] und [mm] x^7 [/mm] mit in die Basis nehmen.

>  
> [mm]a*x^2+b*(x^2+x)+c*(x^2+1)=0[/mm]
>  [mm](a+b+c)*x^2+b*x+c*1=0[/mm]
>  
> a=b=c=0 also linear unabhängig.
>  
> (Muss ich immer Lineare Unabhängigkeit zeigen, wenn es
> darum geht eine Basis zu bestimmen??

Ja, die lineare Unabhängigkeit ist wesentlicher Bestandteil der Definition. Aber Du musst die lineare Unabhängigkeit aller Basiselemente bestimmen, nicht nur die der ersten drei.

Gruß
Sigrid

>  
>
> MfG
>  Mathegirl
>    


Bezug
        
Bezug
Basis eines Vektorraumes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Do 22.03.2012
Autor: davux

Hallo Mathegirl,

da ist ein Fehler in deiner Aufgabestellung. Es müsste doch [mm] $(x_1,x_2,x_3,x_4)\in\IR^4$. [/mm]

Davon ab habe ich heute eine Aufgabe gelesen, die dich in diesem Zusammenhang vielleicht interessieren könnte.

"Angenommen Sie haben ein homogenes lineares Gleichungssystem $Ax=0$, welches in Zeilenstufenform ist. Weiterhin hat das LGS n Unbekannte und r (nicht Null) lineare Gleichungen.
Geben Sie eine Methode an um eine Basis des Lösungsraums W des LGS zu erhalten."

Das System hat $n-r$ freie Variablen [mm] $x_{i_1},x_{i_2},...,x_{i_{n-r}}$. [/mm] Eine Lösung [mm] v_j [/mm] erhält man, indem man [mm] x_{i_j}=1 [/mm] (oder eine beliebige andere Konstante ungleich Null) setzt und die restlichen freien Variablen gleich Null. Dann stellen die Lösungen [mm] v_1,v_2,...v_{n-r} [/mm] eine Basis des Lösungensraumes dar. Dann gilt $dim(W)=n-r$.

Das hast du folgerichtig angewandt, aber wie Fred bereits bemerkt hat, stimmt bei [mm] x_1, x_2 [/mm] etwas nicht. Du hast die Matrix nicht passend zum LGS erstellt. Die letzte Komponente der ersten Zeile stimmt nicht mit dem Koeffizienten der ersten Gleichung aus der Aufgabenstellung überein.

Bezug
                
Bezug
Basis eines Vektorraumes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Do 22.03.2012
Autor: Mathegirl

Oh danke für den Hinweis, da hab ich tatsächlich was falsches in der ersten Zeile geschrieben!
dann ist jetzt sowas alles klar! ;-)

MfG
Mathegirl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]