www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Besselfunktion
Besselfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Besselfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 06.05.2014
Autor: Babybel73

Hallo zusammen

Sitze seit einiger Zeit an folgender Aufgabe:
Für [mm] n\in \IZ [/mm] ist die Bessel Funktion [mm] J_n: \IR [/mm] -> [mm] \IR [/mm] definiert durch
[mm] J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt} [/mm]
Zeige, dass [mm] J_n [/mm] die Besselsche Differentialgleichung
[mm] x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0, [/mm] x [mm] \in \IR [/mm]
löst.

Sei f(t,x)=cos(xsin(t)-nt) & [mm] F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt} [/mm]
Nun kann ich ja den Satz über parameterabhängige Integrale benutzen, da alle Voraussetzungen dieses Satzes erfüllt sind.
Es gilt also:
[mm] \bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt} [/mm]
Nun habe ich dies mit part. Integration weiter aufgelöst:
[mm] =-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt} [/mm] + [mm] \bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt} [/mm]

[mm] \bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt} [/mm]

Setze ich dies nun in die DGL ein: so folgt:
[mm] \bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0 [/mm]

Wie kann ich dies nun weiter lösen?




        
Bezug
Besselfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 07.05.2014
Autor: MathePower

Hallo Babybel73,

> Hallo zusammen
>  
> Sitze seit einiger Zeit an folgender Aufgabe:
> Für [mm]n\in \IZ[/mm] ist die Bessel Funktion [mm]J_n: \IR[/mm] -> [mm]\IR[/mm]
> definiert durch
>  [mm]J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> Zeige, dass [mm]J_n[/mm] die Besselsche Differentialgleichung
> [mm]x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,[/mm] x [mm]\in \IR[/mm]
>  löst.
>
> Sei f(t,x)=cos(xsin(t)-nt) &
> [mm]F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> Nun kann ich ja den Satz über parameterabhängige
> Integrale benutzen, da alle Voraussetzungen dieses Satzes
> erfüllt sind.
> Es gilt also:
>  [mm]\bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}[/mm]
>  
> Nun habe ich dies mit part. Integration weiter aufgelöst:
> [mm]=-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}[/mm]
> + [mm]\bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}[/mm]
>  
> [mm]\bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> Setze ich dies nun in die DGL ein: so folgt:
> [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0[/mm]
>  
> Wie kann ich dies nun weiter lösen?
>


Schreibe den ersten Summanden etwas um:

[mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}=\bruch{n}{\pi}\integral_{0}^{\pi}{\blue{x}*cos(t)*cos(xsin(t)-nt) dt}[/mm]

Der Faktor [mm]x*\cos\left(t\right)[/mm] ist fast die Ableitung von [mm]xsin(t)-nt[/mm].

Damit solltest Du weiter kommen.


Gruss
MathePower

Bezug
                
Bezug
Besselfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Fr 09.05.2014
Autor: Babybel73

Hallo mathepower

> Hallo Babybel73,
>  
> > Hallo zusammen
>  >  
> > Sitze seit einiger Zeit an folgender Aufgabe:
> > Für [mm]n\in \IZ[/mm] ist die Bessel Funktion [mm]J_n: \IR[/mm] -> [mm]\IR[/mm]
> > definiert durch
>  >  
> [mm]J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > Zeige, dass [mm]J_n[/mm] die Besselsche Differentialgleichung
> > [mm]x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,[/mm] x [mm]\in \IR[/mm]
>  >  löst.
> >
> > Sei f(t,x)=cos(xsin(t)-nt) &
> > [mm]F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > Nun kann ich ja den Satz über parameterabhängige
> > Integrale benutzen, da alle Voraussetzungen dieses Satzes
> > erfüllt sind.
> > Es gilt also:
>  >  [mm]\bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}[/mm]
>  
> >  

> > Nun habe ich dies mit part. Integration weiter aufgelöst:
> > [mm]=-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}[/mm]
> > + [mm]\bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > [mm]\bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > Setze ich dies nun in die DGL ein: so folgt:
> > [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0[/mm]
>  
> >  

> > Wie kann ich dies nun weiter lösen?
> >
>
>
> Schreibe den ersten Summanden etwas um:
>  
> [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}=\bruch{n}{\pi}\integral_{0}^{\pi}{\blue{x}*cos(t)*cos(xsin(t)-nt) dt}[/mm]
>  
> Der Faktor [mm]x*\cos\left(t\right)[/mm] ist fast die Ableitung von
> [mm]xsin(t)-nt[/mm].
>  
> Damit solltest Du weiter kommen.
>  

Irgendwie komme ich nicht wirklich weiter, habe versucht nochmals partiell zu integrieren.....aber das hat nicht geklappt, da sich dann ja der hintere Teil wieder ändert....kannst du mir nochmals einen Tipp geben?


>
> Gruss
>  MathePower


Bezug
                        
Bezug
Besselfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Fr 09.05.2014
Autor: MathePower

Hallo Babybel73,


> Hallo mathepower
>  
> > Hallo Babybel73,
>  >  
> > > Hallo zusammen
>  >  >  
> > > Sitze seit einiger Zeit an folgender Aufgabe:
> > > Für [mm]n\in \IZ[/mm] ist die Bessel Funktion [mm]J_n: \IR[/mm] -> [mm]\IR[/mm]
> > > definiert durch
>  >  >  
> > [mm]J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > >  

> > > Zeige, dass [mm]J_n[/mm] die Besselsche Differentialgleichung
> > > [mm]x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,[/mm] x [mm]\in \IR[/mm]
>  >  >  
> löst.
> > >
> > > Sei f(t,x)=cos(xsin(t)-nt) &
> > > [mm]F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > >  

> > > Nun kann ich ja den Satz über parameterabhängige
> > > Integrale benutzen, da alle Voraussetzungen dieses Satzes
> > > erfüllt sind.
> > > Es gilt also:
>  >  >  [mm]\bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}[/mm]
>  
> >  

> > >  

> > > Nun habe ich dies mit part. Integration weiter aufgelöst:
> > > [mm]=-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}[/mm]
> > > + [mm]\bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > >  

> > > [mm]\bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > >  

> > > Setze ich dies nun in die DGL ein: so folgt:
> > > [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0[/mm]
>  
> >  

> > >  

> > > Wie kann ich dies nun weiter lösen?
> > >
> >
> >
> > Schreibe den ersten Summanden etwas um:
>  >  
> > [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}=\bruch{n}{\pi}\integral_{0}^{\pi}{\blue{x}*cos(t)*cos(xsin(t)-nt) dt}[/mm]
>  
> >  

> > Der Faktor [mm]x*\cos\left(t\right)[/mm] ist fast die Ableitung von
> > [mm]xsin(t)-nt[/mm].
>  >  
> > Damit solltest Du weiter kommen.
>  >  
>
> Irgendwie komme ich nicht wirklich weiter, habe versucht
> nochmals partiell zu integrieren.....aber das hat nicht
> geklappt, da sich dann ja der hintere Teil wieder
> ändert....kannst du mir nochmals einen Tipp geben?
>  
>


Wenn der erste Integrand

[mm]\left(x*cos(t)-n\right)*cos(xsin(t)-nt)[/mm]

lauten würde, dann wäre eine Stammfunktion

[mm]\\sin(xsin(t)-nt)[/mm]

Also ist

[mm]\integral_{}^{}{x*cos(t)*cos(xsin(t)-nt) dt}=\\sin(xsin(t)-nt)+\integral_{}^{}{n*cos(xsin(t)-nt) dt}[/mm]


> >
> > Gruss
>  >  MathePower
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]