www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Beweis dass (Q,+,*) Körper ist
Beweis dass (Q,+,*) Körper ist < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis dass (Q,+,*) Körper ist: Beweis eines Körpers
Status: (Frage) beantwortet Status 
Datum: 16:36 So 23.11.2008
Autor: chrissi2709

Aufgabe
a,b,a',b' E Q
(a,b) + (a',b') := (a+a',b+b')
(a,b) * (a',b') := (aa' - bb', ab' + ba')

Aufgabe: Zeigen sie, dass (Q,+,*) ein körper ist;
mir ist klar dass ich distributivität, assoziativität und kommutativität zeigen muss nun will ich fragen wie ich die distributivität zeige. Wie ist hierfür der Ansatz? Und ob das, was ich bisher habe so richtig ist:
Ass.Mult.:
((a,b)*(a',b'))*(a'',b'') = (aa' - bb', ab' + ba')*(a'',b'')
= (aa'a''- bb'b'', aa'b'' + bb'a'', ab'a'' + ba'b'', ab'b'' - ba'a'')
= (a,b)*(a'a''-b'b'',a'b'' + b'a'')
= (a,b)*((a',b')*(a'',b''))
Komm.Add.
(a,b)+(a',b') = (a+a',b+b')
=(a'+a,b'+b)
= (a',b')+(a,b)
Komm.Mult.
(a,b)*(a',b') = (aa' - bb', ab' + ba')
= (a'a - b'b, a'b + b'a)
= (a',b')*(a,b)
Distr.
(a,b)*((a',b')+(a'',b''))= (a,b)*(a'+a'',b'+b'')
=(a*(a'+a'')-b*(b'+b''),a*(b'+b'')+b*(a'+a'')
=(a*a'+a*a''-b*b'-b*b'',a*b'+a*b''+b*a'+b*a'')
=(a,b)*(a',b')+(a,b)*(a'',b'')

        
Bezug
Beweis dass (Q,+,*) Körper ist: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:54 So 23.11.2008
Autor: chrissi2709

Aufgabe
a,b,a',b' E Q
(a,b) + (a',b') := (a+a',b+b')
(a,b) * (a',b') := (aa' - bb', ab' + ba')

Zeigen sie, dass (Q,+,*) nicht angeorndet werden kann;
wie zeige ich so was? was genau schau ich mir da dann an?

Bezug
                
Bezug
Beweis dass (Q,+,*) Körper ist: neutrales Element der Multioli
Status: (Frage) beantwortet Status 
Datum: 18:57 So 23.11.2008
Autor: chrissi2709

Aufgabe
a,b,a',b' E Q
(a,b) + (a',b') := (a+a',b+b')
(a,b) * (a',b') := (aa' - bb', ab' + ba')

wie bekomme ich denn das neutrale Element der Multiplikation?
(a,b)*(x,y)= (a,b)
(x,y)= (a,b)/(a,b)-> wie schreib ich das hier aus?
rauskommen soll ja (1,0), damit kann ich dann das inverse element ausrachnen;

Bezug
                        
Bezug
Beweis dass (Q,+,*) Körper ist: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Mo 24.11.2008
Autor: angela.h.b.


> a,b,a',b' E Q
> (a,b) + (a',b') := (a+a',b+b')
> (a,b) * (a',b') := (aa' - bb', ab' + ba')
>  wie bekomme ich denn das neutrale Element der
> Multiplikation?
> (a,b)*(x,y)= (a,b)
>  (x,y)= (a,b)/(a,b)-> wie schreib ich das hier aus?

Hallo,

'ne Division von Zahlenpaaren wird hier wohl nicht klappen, denn ich sehe nicht, daß Ihr da sirgendwo definiert habt.

Für das neutrale Element (x,y) gilt doch [mm] (a,b)\*(x,y)=(a,b) [/mm]

Das leifert Dir eine Gleichung, mithilfe derer Du das neutrale Element bekommst.

Gruß v. Angela


>  rauskommen soll ja (1,0), damit kann ich dann das inverse
> element ausrachnen;


Bezug
                
Bezug
Beweis dass (Q,+,*) Körper ist: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:58 So 23.11.2008
Autor: chrissi2709

Aufgabe
a,b,a',b' E Q
(a,b) + (a',b') := (a+a',b+b')
(a,b) * (a',b') := (aa' - bb', ab' + ba')

[mm] (0,1)^3=-(0,1)aus [/mm] Aufgabe c)
kann ich schreiben:
bei einem geordneten Körper gilt:
x<y <=>x*x'<y*y'
(0,1)*(0,1)*(0,1) =(0,-1)
x<y    x<y    x<y      x>y
=> körper kann nicht angeordnet werden

Bezug
                        
Bezug
Beweis dass (Q,+,*) Körper ist: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 25.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Beweis dass (Q,+,*) Körper ist: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 25.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beweis dass (Q,+,*) Körper ist: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Mo 24.11.2008
Autor: angela.h.b.


> a,b,a',b' E Q

Hallo,

mit E Q meinst Du wohl [mm] \in \IQ. [/mm]

>  (a,b) + (a',b') := (a+a',b+b')
>  (a,b) * (a',b') := (aa' - bb', ab' + ba')
>  
> Aufgabe: Zeigen sie, dass (Q,+,*) ein körper ist;

Wissen wir doch längst. Oder sollte dieses Q irgendwie anders definiert sein, also Dein [mm] \IQ [/mm] von oben.

Eine vollständige Aufgabenstellung ist immer ganz nett, auch wenn ich mir zusammenreimen kann, was hier gemeint ist.


>  mir ist klar dass ich distributivität, assoziativität und
> kommutativität zeigen muss

Das ist nicht alles. Du mußt sämtliche Körperaxiome nachprüfen.

Das, was Du unten tust, habe ich nicht in Einzelheiten überprüft, aber grob drübergeschaut sieht es vernünftig aus.

Gruß v. Angela



> nun will ich fragen wie ich die
> distributivität zeige. Wie ist hierfür der Ansatz? Und ob
> das, was ich bisher habe so richtig ist:
>  Ass.Mult.:
>  ((a,b)*(a',b'))*(a'',b'') = (aa' - bb', ab' +
> ba')*(a'',b'')
>  = (aa'a''- bb'b'', aa'b'' + bb'a'', ab'a'' + ba'b'',
> ab'b'' - ba'a'')
>  = (a,b)*(a'a''-b'b'',a'b'' + b'a'')
>  = (a,b)*((a',b')*(a'',b''))
>  Komm.Add.
>  (a,b)+(a',b') = (a+a',b+b')
>  =(a'+a,b'+b)
>  = (a',b')+(a,b)
>  Komm.Mult.
>  (a,b)*(a',b') = (aa' - bb', ab' + ba')
>  = (a'a - b'b, a'b + b'a)
>  = (a',b')*(a,b)
>  Distr.
>  (a,b)*((a',b')+(a'',b''))= (a,b)*(a'+a'',b'+b'')
>  =(a*(a'+a'')-b*(b'+b''),a*(b'+b'')+b*(a'+a'')
>  =(a*a'+a*a''-b*b'-b*b'',a*b'+a*b''+b*a'+b*a'')
>  =(a,b)*(a',b')+(a,b)*(a'',b'')


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]