Beweise Erwartungswerte etc. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:23 Sa 24.02.2018 | Autor: | Jellal |
Guten Abend,
ich habe ein paar kleine Beweisaufgaben, bei denen ich nicht weiß, was getan werden soll :(
Seien [mm] X,X_{1},...,X_{n} [/mm] unabhängig identisch verteilte reelle Zufallszahlen mit Verteilungsfunktion F.
Gesucht ist als erstes der Erwartungswert von [mm] Ind_{]-\infty,t]}(X) [/mm] mit t reell. Ind ist die Indikatorfunktion.
Der Erwartungswert ergibt sich doch dann mit:
[mm] E(Ind_{]-\infty,t]}(X))=\integral_{-\infty}^{t}{xf(x) dx}
[/mm]
[mm] =\integral_{-\infty}^{t}{x F'(x) dx}
[/mm]
= [mm] t*F(t)-\integral_{-\infty}^{t}{F(x)dx}
[/mm]
Im letzten Schritt wurde partiell integriert.
Und was nun? Soll das schon alles sein :(?
Gruß
EDIT: Habe jetzt die Lösungen, siehe unten.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:34 Sa 24.02.2018 | Autor: | Jellal |
Ich habe jetzt die jeweiligen kleinen Beweise gemacht und würde gerne eine Bestätigung von euch haben.
Seien [mm] X,X_{1},...,X_{n} [/mm] unabhängig identisch verteilt und reell, mit Verteilungsfunktion F.
a) Erwartungswert und Varianz der Zufallsvariablen [mm] Ind_{]-\infty,t]}(X) [/mm] und Kovarianz von [mm] Ind_{]-\infty,t]}(X) [/mm] und [mm] Ind_{]-\infty,s]}(X) [/mm] für t,s [mm] \in \IR.
[/mm]
Oben habe ich schon den Erwartungswert versucht, aber einen Fehler im ersten Integral gemacht.
[mm] E(Ind_{]-\infty,t]}(X))=\integral_{-\infty}^{t}{f(x) dx}=F(t).
[/mm]
[mm] V(Ind_{]-\infty,t]}(X))=E((Ind_{]-\infty,t]}(X))^{2})-F^{2}(t)=E(Ind_{]-\infty,t]}(X))-F^{2}(t)=F(t)-F^{2}(t)=F(t)(1-F(t))
[/mm]
[mm] Cov(Ind_{]-\infty,t]}(X),Ind_{]-\infty,s]}(X))=:Cov(T,S)
[/mm]
[mm] =E(TS)-E(S)E(T)=E(Ind_{]-\infty,min(s,t)]}(X))-F(s)F(t)
[/mm]
=F(min(s,t))-F(s)F(t).
b) Finde Verteilung der ZV [mm] Y_{n,t}= \summe_{i=1}^{n}Ind_{]-\infty,t]}(X_{i}), [/mm] t reell.
Nun ist [mm] Y_{n,t}=k [/mm] wenn k der [mm] X_{i} [/mm] in [mm] ]-\infty,t] [/mm] liegen.
Dies geschieht jeweils mit gleicher Wahrscheinlichkeit und unabhängig voneinander --> Binomialverteilung: [mm] Y_{n,t} [/mm] ~ [mm] B_{n,p} [/mm] mit p=F(t).
c)Für reelles t sind Erwartungswert und Varianz von [mm] F_{n,t}=1/n Y_{n,t} [/mm] gesucht.
Hier habe ich manuell gerechnet, aber wenn man weiß, dass [mm] Y_{n,k} [/mm] binomialverteilt ist, ist klar, dass [mm] E(F_{n,t})=F(t) [/mm] und [mm] V(F_{n,t})=F(t)(1-F(t)) [/mm] sind.
d)Man bestimme die Kovarianz von [mm] F_{n,t} [/mm] und [mm] F_{n,s} [/mm] für reelle s,t.
[mm] Cov(F_{n,t},F_{n,s})=E(F_{n,t}*F_{n,s})-E(F_{n,s})*E(F_{n,t})
[/mm]
[mm] =\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(Ind_{]-\infty,t]}(X_{i})Ind_{]-\infty,s]}(X_{j}))-F(S)F(T)
[/mm]
Da die beiden X unabhängig sind und die einzelnen Erwartungswerte existieren, gilt E(a*b)=E(a)*E(b).
[mm] ...=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(Ind_{]-\infty,t]}(X_{i}))E(Ind_{]-\infty,s]}(X_{j}))-F(S)F(T)
[/mm]
= [mm] \bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}P(]-\infty,t])P(]-\infty,s])-F(S)F(T)
[/mm]
=F(S)F(T)-F(S)F(T)
=0
So, sorry für den langen Beitrag!
|
|
|
|
|
Hiho,
> [mm]E(Ind_{]-\infty,t]}(X))=\integral_{\-infty}^{t}{f(x) dx}=F(t).[/mm]
>
> [mm]V(Ind_{]-\infty,t]}(X))=E((Ind_{]-\infty,t]}(X))^{2})-F^{2}(t)=E(Ind_{]-\infty,t]}(X))-F^{2}(t)=F(t)-F^{2}(t)=F(t)(1-F(t))[/mm]
Beides ist ok.
Kleine Fingerübung: Es gilt ja, dass die Varianz immer nichtnegativ ist. Ist sie Null, so ist die Zufallsvariable konstant.
Kannst du begründen, warum $F(t)(1-F(t)) [mm] \ge [/mm] 0$ gilt und $F(t)(1-F(t)) = 0$ nur, falls [mm] $1_{]-\infty,t]}(X)$ [/mm] konstant?
> [mm]Cov(Ind_{]-\infty,t]}(X),Ind_{]-\infty,s]}(X)=:Cov(T,S)[/mm]
> [mm]=E(TS)-E(S)E(T)=E(Ind_{]-\infty,min(s,t)]}(X))-F(s)F(t)[/mm]
> =F(min(s,t))-F(s)F(t).
> b) Finde Verteilung der ZV [mm]Y_{n,t}= \summe_{i=1}^{n}Ind_{]-\infty,t]}(X_{i}),[/mm]
> t reell.
>
> Nun ist [mm]Y_{n,t}=k[/mm] wenn k der [mm]X_{i}[/mm] in [mm]]-\infty,t][/mm] liegen.
> Dies geschieht jeweils mit gleicher Wahrscheinlichkeit und
> unabhängig voneinander --> Binomialverteilung: [mm]Y_{n,t}[/mm] ~
> [mm]B_{n,p}[/mm] mit p=F(t).
>
> c)Für reelles t sind Erwartungswert und Varianz von
> [mm]F_{n,t}=1/n Y_{n,t}[/mm] gesucht.
> Hier habe ich manuell gerechnet, aber wenn man weiß, dass
> [mm]Y_{n,k}[/mm] binomialverteilt ist, ist klar, dass
> [mm]E(F_{n,t})=F(t)[/mm] und [mm]V(F_{n,t})=F(t)(1-F(t))[/mm] sind.
> d)Man bestimme die Kovarianz von [mm]F_{n,t}[/mm] und [mm]F_{n,s}[/mm] für
> reelle s,t.
>
> [mm]Cov(F_{n,t},F_{n,s})=E(F_{n,t}*F_{n,s})-E(F_{n,s})*E(F_{n,t})[/mm]
>
> [mm]=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(Ind_{]-\infty,t]}(X_{i})Ind_{]-\infty,s]}(X_{j}))-F(S)F(T)[/mm]
Bis hierhin ist das ok
> Da die beiden X unabhängig sind und die einzelnen
> Erwartungswerte existieren, gilt E(a*b)=E(a)*E(b).
Hier warst du etwas vorschnell… welche "beiden X"
Natürlich sind [mm] $X_i$ [/mm] und [mm] $X_j$ [/mm] nur unabhängig, wenn [mm] $i\not=j$ [/mm]
Du hast aber auch Summanden, bei denen $i=j$ gilt!
Dann solltest du noch aufpassen, Klein- und Großbuchstaben nicht zu verwechseln sowie am Ende nicht so vorschnell deine Summen zusammenzufassen… da darfst du also nochmal ran.
> So, sorry für den langen Beitrag!
Keine Ursache, wenn die immer so ausgearbeitet sind und du zukünftig die Indikatorfunktion nicht so komisch schreibst, passt das schon.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:13 Sa 24.02.2018 | Autor: | Jellal |
Hallo Gono,
danke für die schnelle Antwort. Ich wollte noch Schönheitsfehler editieren, vor allem die großen S,T am Ende, aber da warst du schon am Antworten und zeitgleich konnte ich nicht editieren.
Zu der Fingerübung: F(t)(1-F(t))=0 für F(t)=0 oder F(t)=1.
F(t)=0 heißt [mm] P(]-\infty, [/mm] t])=0, das ist bei der rellen Zufallsvariable [mm] 1_]-\infty,t](X) [/mm] nur möglich für [mm] t-->-\infty, [/mm] womit die ZV konstant 0 wäre. F(t)=1 führt dann zu [mm] P(]-\infty,t])=1 [/mm] und daher [mm] t-->\infty [/mm] und damit ist die ZV konstant 1.
Zu meiner letzten Aufgabe: Ja, da habe ich nicht dran gedacht. Das wäre mich sicher auch in einer Klausur passiert...
[mm] Cov(F_{n,t},F_{n,s})=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(1_{]-\infty,t]}(X_{i})1_{]-\infty,s]}(X_{j}))-F(S)F(T)
[/mm]
[mm] =\bruch{1}{n^{2}}(\summe_{i=1}^{n}\summe_{j=1}^{n} _{i\not=j}P(]-\infty,t])P(]-\infty,s])+\summe_{i=1}^{n}E(1_]-\infty,t](X_{i})1_[-\infty,s](X_{i})))-F(s)F(t)
[/mm]
Der E-Wert am Ende wurde vorher schon mal berechnet, also einsetzen liefert:
[mm] ...=1/n^{2} ((n^{2}-n)F(t)F(s)+n [/mm] F(min(s,t))) -F(s)F(t)
=1/n (F(min(s,t))-F(t)F(s))
So?
|
|
|
|
|
Hiho,
> Zu der Fingerübung: F(t)(1-F(t))=0 für F(t)=0 oder F(t)=1.
Bevor ich nun ins Detail gehe zum Rest, eine allgemeine Anmerkung. Deine Grundidee ist (fast) richtig, deine Argumentation oder Notation unsauber.
Du wirst gleich sehen, wieso:
> F(t)=0 heißt [mm]P(]-\infty,[/mm] t])=0
Nein: $F(t) = 0$ bedeutet $P(X [mm] \le [/mm] t) = P(X [mm] \in ]-\infty,t]) [/mm] = 0$
> das ist bei der rellen Zufallsvariable [mm]1_]-\infty,t](X)[/mm] nur möglich für [mm]t-->-\infty,[/mm] womit die ZV konstant 0 wäre.
Das ist falsch.
[mm]1_]-\infty,t](X)[/mm] ist dann konstant Null, wenn $X [mm] \not\in ]-\infty,t]$
[/mm]
Die Wahrscheinlichkeit, dass $X [mm] \in ]-\infty,t]$ [/mm] ist aber nach obiger Annahme $F(t) = 0$ gerade Null. Damit auch [mm]1_]-\infty,t](X)[/mm].
Den anderen Fall kannst du mal selbst so versuchen…
> Zu meiner letzten Aufgabe: Ja, da habe ich nicht dran
> gedacht. Das wäre mich sicher auch in einer Klausur
> passiert...
Ist auch ein gern gemachter Fehler
> [mm]Cov(F_{n,t},F_{n,s})=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(1_{]-\infty,t]}(X_{i})1_{]-\infty,s]}(X_{j}))-F(S)F(T)[/mm]
> [mm]=\bruch{1}{n^{2}}(\summe_{i=1}^{n}\summe_{j=1}^{n} _{i\not=j}P(]-\infty,t])P(]-\infty,s])+\summe_{i=1}^{n}E(1_]-\infty,t](X_{i})1_[-\infty,s](X_{i})))-F(s)F(t)[/mm]
>
> Der E-Wert am Ende wurde vorher schon mal berechnet, also
> einsetzen liefert:
>
> [mm]...=1/n^{2} ((n^{2}-n)F(t)F(s)+n[/mm] F(min(s,t))) -F(s)F(t)
> =1/n (F(min(s,t))-F(t)F(s))
>
> So?
Deutlich besser.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:24 Sa 24.02.2018 | Autor: | Jellal |
Da war ich wohl zu vorschnell.
Aber ist P(X [mm] \le [/mm] t) = P(X [mm] \in ]-\infty,t]) [/mm] nicht das gleiche wie [mm] P(]-\infty,t])? [/mm] Also wenn ich mit P die ganze Zeit [mm] P^{x} [/mm] meine. In den Rechnungen hatte ich ja auch immer P(Menge) geschrieben.
Aber ansonsten verstehe ich deine Aussage. Ich habe mit dem t rumgespielt, dabei ist das t ja als gegeben anzusehen.
Also F(t)=1 meint X ist zu 100% in [mm] ]-\infty,t]. [/mm] Dann ist [mm] 1_]-\infty,t](X)=1 [/mm] für alle Realisierungen von X.
|
|
|
|
|
Hiho,
> Aber ist P(X [mm]\le[/mm] t) = P(X [mm]\in ]-\infty,t])[/mm] nicht das
> gleiche wie [mm]P(]-\infty,t])?[/mm] Also wenn ich mit P die ganze
> Zeit [mm]P^{x}[/mm] meine.
Also natürlich ist $P(X [mm][mm] \in ]-\infty,t])$ [/mm] im Allgemeinen nie dasselbe wie [mm]P(]-\infty,t])[/mm], egal welches W-Maß du nimmst.
Was natürlich gilt, ist $P(X [mm][mm] \in ]-\infty,t]) [/mm] = [mm] P^X(]-\infty,t])$, [/mm] wenn mit [mm] P^X [/mm] das Bildmaß bezeichnet wird.
Allerdings ist es allgemeiner Konsens, dass wenn man [mm] $E[\cdot]$ [/mm] und [mm] $P(\ldot)$ [/mm] verwendet, immer das W-Maß gemeint ist, unter dem man auch den Erwartungswert bildet. Und das dem Erwartungswert zugrundeliegende W-Maß ist eben P und nicht [mm] P^X
[/mm]
> Also F(t)=1 meint X ist zu 100% in [mm]]-\infty,t].[/mm] Dann ist
> [mm]1_]-\infty,t](X)=1[/mm] für alle Realisierungen von X.
Penibel korrekt nur für $P$-fast alle Realisierungen, aber ansonsten passt das.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:57 So 25.02.2018 | Autor: | Jellal |
Achso, weil bei einer stetigen Verteilung die Wahrscheinlichkeit für Ereignisse, die sich auf einzelne Punkte beziehen =0?
Das heißt, n Realisierungen könnten in [mm] ]-\infty,t] [/mm] liegen, trotzdem wäre P=0 für das Ereignis, dass X darin liegt.
|
|
|
|
|
Hiho,
für eine stetige Verteilung ist das ein gutes Beispiel, ja.
Du hast ja aber keine weitere Informationen über die [mm] $X_i$ [/mm] angegeben, außer dass sie identisch verteilt und unabhängig sind, d.h. im Wesentlichen hängt das natürlich von dem gegebenen W-Maß $P$ ab.
Ein kleines Beispiel:
Seien die [mm] $X_i$ [/mm] schlicht die Identität auf [mm] $\IR$, [/mm] d.h. [mm] $X_i(\omega) [/mm] = [mm] \omega$
[/mm]
1.) Wählen wir nun als W-Maß $P = [mm] \lambda_{[0,1]}$, [/mm] d.h. das Borel-Lebesgue-Maß bzw. die Gleichverteilung auf $[0,1]$ so ist das Ereignis [mm] $X_i=\frac{1}{2}$ [/mm] eben nicht wahrscheinlicher als [mm] $X_i [/mm] = 2$ oder [mm] $X_i [/mm] = 0$.
Aus "Sicht" vom W-Maß gilt aber sogar [mm] $X_i [/mm] = [mm] X_i*1_{[0,1]}$, [/mm] d.h. wirklich relevant ist nur das, was auf [0,1] passiert, da der Rest eine [mm] $\lambd$a-Nullmenge [/mm] ist.
2.) Wählen wir als W-Maß jedoch $P = [mm] \delta_0$, [/mm] d.h. das Dirac-Maß in Null, so ist [mm] $X_i=0$ [/mm] das fast sichere Ereignis und damit deutlich "wahrscheinlicher" als die anderen beiden Ereignisse [mm] $X_i [/mm] = 2$ oder [mm] $X_i [/mm] = [mm] \frac{1}{2}$. [/mm] Analog gilt hier aus "Sicht" des W-Maßes [mm] $\delta_0$, [/mm] dass [mm] $X_i \equiv [/mm] 0$ also fast sicher konstant Null ist, da [mm] $\delta(\IR\setminus\{0\}) [/mm] = 0$.
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:02 Fr 02.03.2018 | Autor: | Jellal |
Danke dir für deine Antworten!
Gruß
Jellal
|
|
|
|
|
Hiho,
> Gesucht ist als erstes der Erwartungswert von
> [mm]Ind_{]-\infty,t]}(X)[/mm] mit t reell. Ind ist die
> Indikatorfunktion.
> [mm]E(Ind_{]-\infty,t]}(X))=\integral_{-\infty}^{t}{xf(x) dx}[/mm]
> EDIT: Habe jetzt die Lösungen, siehe unten.
unten steht nur leider nix. Das von dir bisher Geschriebene ist falsch.
Für die Indikatorfunktion verwende einfach eine 1… in deinem Fall also einfach [mm] $1_{]-\infty,t]}(X)$
[/mm]
Gruß,
Gono
|
|
|
|