Cauchy-Schwarz-Ungl. Beweis < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:43 Do 09.08.2012 | Autor: | Kontakti |
Aufgabe | Für beliebige f,g gilt:
[mm]\left||f *g\right||_1\le\left||f \right||_2*\left||g\right||_2[/mm] |
Hallo!
Ich habe hier einen Beweis zur obigen Cauchy-Schwarzschen-Ungleichung, den ich nicht ganz verstehe. In dem Beweis werden mehrere Fälle unterschieden, zunächst [mm]\left||f \right||_2*\left||g\right||_2\in\left\{ 0,\infty\right\}[/mm], wobei dabei immer mindestens ein Faktor Null ist, also gilt auch fast überall [mm]f*g=0[/mm]. Für [mm]0<\left||f \right||_2<\infty[/mm] (g analog) reicht es aus Homogenitätsgründen [mm]\left||f \right||_2=\left||g\right||_2=1[/mm] zu betrachten. Bis dahin ist alles klar aber dann steht da:
In diesem Fall folgt [mm]\left||f *g\right||_1\le1[/mm] aus [mm]\left|f *g\right|\le\left\bruch{1}{2} \right(\left|f\right|^2+\left|g\right|^2)[/mm] und dazu nun meine Frage:
Woher kommt diese letzte Ungleichung und warum gilt sie? Habe schon mehrere Beweise der CSU angeschaut, aber da ist die Vorgehensweise immer anders...
Schon jetzt vielen Dank für eure Hilfe
lg
Kontakti
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:57 Do 09.08.2012 | Autor: | fred97 |
> Für beliebige f,g gilt:
> [mm]\left||f *g\right||_1\le\left||f \right||_2*\left||g\right||_2[/mm]
>
> Hallo!
> Ich habe hier einen Beweis zur obigen
> Cauchy-Schwarzschen-Ungleichung, den ich nicht ganz
> verstehe. In dem Beweis werden mehrere Fälle
> unterschieden, zunächst [mm]\left||f \right||_2*\left||g\right||_2\in\left\{ 0,\infty\right\}[/mm],
> wobei dabei immer mindestens ein Faktor Null ist, also gilt
> auch fast überall [mm]f*g=0[/mm]. Für [mm]0<\left||f \right||_2<\infty[/mm]
> (g analog) reicht es aus Homogenitätsgründen [mm]\left||f \right||_2=\left||g\right||_2=1[/mm]
> zu betrachten. Bis dahin ist alles klar aber dann steht
> da:
> In diesem Fall folgt [mm]\left||f *g\right||_1\le1[/mm] aus [mm]\left|f *g\right|\le\left\bruch{1}{2} \right(\left|f\right|^2+\left|g\right|^2)[/mm]
> und dazu nun meine Frage:
> Woher kommt diese letzte Ungleichung und warum gilt sie?
> Habe schon mehrere Beweise der CSU angeschaut, aber da ist
> die Vorgehensweise immer anders...
|ab| [mm] \le 1/2(|a|^2+|b|^2) \gdw [/mm] 0 [mm] \le |a|^2-2|ab|+|b|^2 \gdw [/mm] 0 [mm] \le(|a|-|b|)^2
[/mm]
FRED
> Schon jetzt vielen Dank für eure Hilfe
> lg
> Kontakti
|
|
|
|