www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Charakteristisches Polynom
Charakteristisches Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 So 04.02.2007
Autor: Ron85

Hi Leute.

Sei A [mm] \in \IR^{nx} [/mm] invertierbar

Kann mir jemand sagen, wie sich die Koeffizienten des Charakteristischen Polynoms von [mm] A^{-1} [/mm] aus den Koeffizienten des Charakteristischen Polynoms von A ergeben?

Kann mir jemand helfen?

        
Bezug
Charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 So 04.02.2007
Autor: Leopold_Gast

Es seien [mm]\varphi,\psi[/mm] die charakteristischen Polynome von [mm]A[/mm] bzw. [mm]A^{-1}[/mm]. Mit [mm]E[/mm] als [mm]n[/mm]-ter Einheitsmatrix gilt also

[mm]\varphi(x) = \left| A - xE \right|[/mm]

[mm]\psi(x) = \left| A^{-1} - xE \right| = \left| -x A^{-1} \left( A - \frac{1}{x} E \right) \right| = |A|^{-1} (-x)^n \, \varphi \left( \frac{1}{x} \right)[/mm]

Jetzt übersetze diese Beziehung in eine zwischen den Koeffizienten von [mm]\varphi[/mm] und [mm]\psi[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]