www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1.Ordnung Substitution
DGL 1.Ordnung Substitution < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1.Ordnung Substitution: DGL lösen mit Substitution
Status: (Frage) statuslos Status 
Datum: 19:40 Do 09.01.2025
Autor: TimonHasstMathe

Aufgabe
Für [mm] $\left| t \right| [/mm] $ < 1 betrachte die DGL
[mm] $\left( 1 - t^2 \right)x' [/mm] - tx + 1=0$.
Bestimmen Sie eine allgemeine Lösung der DGL und sodann lösen Sie das Anfangswertproblem
[mm] $\left( 1-t^2 \right) [/mm] x' - tx + 1 =0$
$x [mm] \left( 0 \right) [/mm] = 1$.

Hallo Zusammen,
ich bin mal wieder am verzweifeln in Mathe. Ich muss wie in der Aufgabenstellung oben eine allgemeine Lösung der DGL angeben. Da es sich nach meiner Einschätzung um eine nicht-lineare DGL 1.Ordnung handelt, wäre mein erster Schritt die Trennung der Variablen gewesen. Da diese sich jedoch nicht trennen lassen, muss glaube ich substituiert werden. Daran scheitere ich im Moment. Durch Hilfe bin ich bereits soweit gekommen. Verstehe aber erstens nicht genau wie und warum man auf den Ansatz für die Substitution kommt und ob das dann überhaupt die allgemeine Lösung ist.
Hier sind meine Berechnungen:

1. Variablen trennen:

$ [mm] \left( 1-t^2 \right) [/mm] x' - tx + 1 = 0  [mm] \Rightarrow [/mm] x' - [mm] \bruch{t}{1-t^2} [/mm] x = - [mm] \bruch{1}{1-t^2}$ [/mm]

Substitution:

[mm] $x_{\left( t \right)} [/mm] = [mm] e^{\int_{}^{} u_\left(t\right)}$ [/mm]  
mit
[mm] $u=1-t^2$ [/mm]

[mm] $\bruch{du}{dt} [/mm] = -2t [mm] \Rightarrow [/mm] dt = - [mm] \bruch{du}{2t}$ [/mm]

[mm] $\Rightarrow [/mm] - [mm] \bruch{1}{2} \int_{}{} \bruch{1}{t} \* u\,du$ $\Rightarrow [/mm] - [mm] \bruch{1}{4} \* \bruch{u^2}{t}$ [/mm]    mit    $u = [mm] 1-t^2$ [/mm]

[mm] $\Rightarrow [/mm] - [mm] \bruch{1}{4} \* \left( \bruch{1}{t} - t^3 \right)$ [/mm]

[mm] $\Rightarrow x_{\left(t\right)} [/mm] = [mm] e^{- \bruch{1}{4} \left( \bruch{1}{t} - t^3 \right)}$ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]