www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL System lösen
DGL System lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL System lösen: richter Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 21.01.2006
Autor: Quin026

Aufgabe
dx/dt = 2x + y + sin t

dy/dt = x + 2y

Also ich habe dx/dt = x' und  dy/dt = y' geschrieben.

1. x' =2x + y + sin t

2. y' = x + 2y

dann habe ich 2. abgeleitet.

2.1.  y'' = x' + 2y  [mm] \Rightarrow [/mm]  x' = y'' - 2y

dann habe ich die gleichungen ineinander eingesetzt.

y'' - 2y = 2x + y + sin t

Kann ich jetzt einfach meinen Partilulären Ansatz mach?

Was ist mit sin t kann ich das als Konstante betrachten?

Oder muss ich sin t beim Partikulären Ansatz beachten?

Danke für eure hilfe.

        
Bezug
DGL System lösen: Endergebniss
Status: (Frage) beantwortet Status 
Datum: 22:11 Sa 21.01.2006
Autor: Quin026

Aufgabe
x' = 2x + y + sin(t)

y' = x + 2y

ich bin jetzt dafon ausgegangen das sin(t) eine Konstante ist.

Endergebniss

y = ce^(-x) - 2x + sin(t) +4

danke für eure Hilfe.


Bezug
                
Bezug
DGL System lösen: x(t) auch gesucht?
Status: (Antwort) fertig Status 
Datum: 22:45 Sa 21.01.2006
Autor: MathePower

Hallo Quin026,

> x' = 2x + y + sin(t)
>  
> y' = x + 2y
>  
> ich bin jetzt dafon ausgegangen das sin(t) eine Konstante
> ist.
>  Endergebniss
>  
> y = ce^(-x) - 2x + sin(t) +4

y und x sollen doch jeweils Funktionen von t sein?!

Gruß
MathePower

Bezug
                        
Bezug
DGL System lösen: Gute idee
Status: (Frage) beantwortet Status 
Datum: 14:25 So 22.01.2006
Autor: Quin026

Aufgabe
x' = 2x + y + sin(t)

y' = x + 2y

ja die sollten nach t abgeleitet werden.

ich habe das jetzt auch so gemacht 2. Gleichung nach x um gestellt und in 1. eingesetzt.

dadurch bekomme ich dan die DGL

3.     -2y' - 5y = sin(t) - x'

so jetzt meine frage muss ich jetzt alles nach t ableten?
und was ist  mit x'

danke für eure hilfe



Bezug
                                
Bezug
DGL System lösen: nur y' oder nur x'
Status: (Antwort) fertig Status 
Datum: 15:08 So 22.01.2006
Autor: leduart

Hallo Quin
Du brauchst Gleichungen, in denen NUR x,x'x'' oder y,y'y'' vorkommen plus einer Funktion von t.

> x' = 2x + y + sin(t)  
> y' = x + 2y
>  ja die sollten nach t abgeleitet werden.
>  
> ich habe das jetzt auch so gemacht 2. Gleichung nach x um
> gestellt und in 1. eingesetzt.
>  
> dadurch bekomme ich dan die DGL
>  
> 3.     -2y' - 5y = sin(t) - x'
>  
> so jetzt meine frage muss ich jetzt alles nach t ableten?
>  und was ist  mit x'

also musst du auch noch x' ersetzen, indem du die 2. Gl differenzierst und dann nach x' auflöst. aber das war im ersten post falsch  : aus y' = x + 2y differenziert gibt y'' = x' + 2y'
Dann hast du, wenn du alles richtig gemacht hast ne lineare Gleichung mit y'',y',y und nem Term mit sint. sint ist sicher keine Konstante! jetzt müsstest du eigentlich gelern haben, wie man so ne "inhomogene" Dgl. löst. Was weisst du darüber?
Gruss leduart


Bezug
        
Bezug
DGL System lösen: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:42 Sa 21.01.2006
Autor: MathePower

Hallo Quin026,

> dx/dt = 2x + y + sin t
>  
> dy/dt = x + 2y
>  Also ich habe dx/dt = x' und  dy/dt = y' geschrieben.
>
> 1. x' =2x + y + sin t
>  
> 2. y' = x + 2y
>  
> dann habe ich 2. abgeleitet.
>  
> 2.1.  y'' = x' + 2y  [mm]\Rightarrow[/mm]  x' = y'' - 2y
>  
> dann habe ich die gleichungen ineinander eingesetzt.
>  
> y'' - 2y = 2x + y + sin t
>  
> Kann ich jetzt einfach meinen Partilulären Ansatz mach?
>  
> Was ist mit sin t kann ich das als Konstante betrachten?
>  
> Oder muss ich sin t beim Partikulären Ansatz beachten?
>  
> Danke für eure hilfe.

Ich habe zuerst die zweite Gleichung nach x aufgelöst und in die 1. Gleichung eingesetzt.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]