www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL höherer Ordnung
DGL höherer Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL höherer Ordnung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:34 Di 06.03.2012
Autor: Kampfkekschen

Aufgabe
Bestimmen Sie für die folgende DGL die allgemeine Lösung
[mm] y^{(7)}+2*y^{(6)}+4*y^{(5)}+8*y{(4)}= e^{-t} [/mm]

Hallo zusammen,

bearbeite grade folgende Aufgabe und es wäre toll wenn jemand vllt mal drüber gucken könnte ob ich einen Fehler gemacht habe:

zuerst die homogene lösung bestimmen:
[mm] \lambda^7 +2*\lambda^6 +4*\lambda^5+8*\lambda^4=0 [/mm]
[mm] =\lambda^4 (\lambda^3+2*\lambda^2+4*\lambda+8)=0 [/mm]
=> [mm] \lambda^4=0 \vee (\lambda^3+2*\lambda^2+4*\lambda+8)=0 [/mm]
=> [mm] \lambda^4=0 [/mm] daraus folgt vierfache NST [mm] \lambda [/mm] =0

=> [mm] (\lambda^3+2*\lambda^2+4*\lambda+8)=0 [/mm]
NST: [mm] \lambda= [/mm] -2 ; [mm] \lambda=2i [/mm] ; [mm] \lambda=-2i [/mm]

Daraus folgt die allgemeine homogene Lösung
[mm] y_h(x)= c_1 +c_2*x [/mm] + [mm] c_3*x^2 +c_4*x^3 +c_5*e^{-2x} [/mm] + [mm] c_6*e^{2ix} +c_7*e^{-2ix} [/mm]

als reelle allgemeine homogene Lösung:
[mm] y_h(x)= c_1 +c_2*x [/mm] + [mm] c_3*x^2 +c_4*x^3 +c_5*e^{-2x}+ c_6*cos(2x)+ c_7*sin(2x) [/mm]

inhomogene Lösung bestimmen:
Ansatz [mm] y_{inh}= Ae^{-t} [/mm]
das jetzt 7 mal ableiten und in die DGL einsetzen:

=> [mm] -Ae^{-t} +2*Ae^{-t}+4*(-Ae^{-t})+8*Ae^{-t}=e^{-t} [/mm]
=>5A=1
=> A= [mm] \bruch{1}{5} [/mm]

allgemeine Lösung:



y(x)= [mm] c_1 +c_2*x [/mm] + [mm] c_3*x^2 +c_4*x^3 +c_5*e^{-2x}+ c_6*cos(2x)+ c_7*sin(2x) [/mm] + [mm] \bruch{1}{5} *e^{-t} [/mm]

ist das so richtig?
Danke schonmal fürs korrigieren

Gruß,
Kampfkekschen


        
Bezug
DGL höherer Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Di 06.03.2012
Autor: fencheltee


> Bestimmen Sie für die folgende DGL die allgemeine Lösung
>  [mm]y^{(7)}+2*y^{(6)}+4*y^{(5)}+8*y{(4)}= e^{-t}[/mm]
>  Hallo
> zusammen,
>  
> bearbeite grade folgende Aufgabe und es wäre toll wenn
> jemand vllt mal drüber gucken könnte ob ich einen Fehler
> gemacht habe:
>  
> zuerst die homogene lösung bestimmen:
>  [mm]\lambda^7 +2*\lambda^6 +4*\lambda^5+8*\lambda^4=0[/mm]
>  
> [mm]=\lambda^4 (\lambda^3+2*\lambda^2+4*\lambda+8)=0[/mm]
>  =>

> [mm]\lambda^4=0 \vee (\lambda^3+2*\lambda^2+4*\lambda+8)=0[/mm]
>  =>

> [mm]\lambda^4=0[/mm] daraus folgt vierfache NST [mm]\lambda[/mm] =0
>  
> => [mm](\lambda^3+2*\lambda^2+4*\lambda+8)=0[/mm]
>  NST: [mm]\lambda=[/mm] -2 ; [mm]\lambda=2i[/mm] ; [mm]\lambda=-2i[/mm]
>  
> Daraus folgt die allgemeine homogene Lösung
>  [mm]y_h(x)= c_1 +c_2*x[/mm] + [mm]c_3*x^2 +c_4*x^3 +c_5*e^{-2x}[/mm] +
> [mm]c_6*e^{2ix} +c_7*e^{-2ix}[/mm]
>
> als reelle allgemeine homogene Lösung:
> [mm]y_h(x)= c_1 +c_2*x[/mm] + [mm]c_3*x^2 +c_4*x^3 +c_5*e^{-2x}+ c_6*cos(2x)+ c_7*sin(2x)[/mm]
>  

hallo,
der störterm als funktion von t suggeriert, dass die ableitungen nach t - nicht nach x - sind. sonst wär der störterm eine konstante für x.
das also noch ändern. ansonsten alles richtig

> inhomogene Lösung bestimmen:
>  Ansatz [mm]y_{inh}= Ae^{-t}[/mm]
>  das jetzt 7 mal ableiten und in
> die DGL einsetzen:
>  
> => [mm]-Ae^{-t} +2*Ae^{-t}+4*(-Ae^{-t})+8*Ae^{-t}=e^{-t}[/mm]
>  
> =>5A=1
>  => A= [mm]\bruch{1}{5}[/mm]

>  
> allgemeine Lösung:
>  
>
>
> y(x)= [mm]c_1 +c_2*x[/mm] + [mm]c_3*x^2 +c_4*x^3 +c_5*e^{-2x}+ c_6*cos(2x)+ c_7*sin(2x)[/mm]
> + [mm]\bruch{1}{5} *e^{-t}[/mm]
>  
> ist das so richtig?
>  Danke schonmal fürs korrigieren
>  
> Gruß,
>  Kampfkekschen
>  

gruß tee

Bezug
                
Bezug
DGL höherer Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Di 06.03.2012
Autor: Kampfkekschen

Oh stimmt da stand ja ein t und kein x! Danke für die Anmerkung! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]