Definitheit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:33 Fr 16.07.2010 | Autor: | kappen |
Aufgabe | Bestimmen Sie alle Werte von t€R, für die A: [mm] \pmat{ 1+t & 2 & 0 \\ 2&4+t&1\\0&1&0 } [/mm] positiv oder negativ definitv ist. |
Hi :)
Habe zuerst versucht das über die Eigenwerte zu machen, aber die sind ja irgendwie ein schlechter Scherz: http://www2.wolframalpha.com/input/?i={{1%2Bt,2,0},{2,4%2Bt,1},{0,1,0}}+eigenvalue
Dann über Hurwitz, für positiv definit müssen die Hauptminoren alle positiv sein:
[mm] D_1=1+t>0 [/mm] für t>-1
[mm] D_2=4+5t+t^2-4>0 [/mm] für t>0 oder t<-5
[mm] D_3=-1-t>0 [/mm] für t<-1
Das schließt sich doch schonmal alles hier aus. Bedeutet das, dass es definitiv kein t für eine positiv definite Matrix gibt, oder müsste ich noch andere Verfahren anwenden?
Für die Überprüfung auf negativ definit muss [mm] D_1 [/mm] negativ sein und dann das Vorzeichen alternieren..
Also [mm] D_1=t<-1
[/mm]
[mm] D_2=4+5t+t^2-4>0 [/mm] für t>0 oder t<-5
[mm] D_3=t>-1
[/mm]
Also auch widersprüchlich..
Was ist da los ? ;)
Danke & viele Grüße
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:21 Fr 16.07.2010 | Autor: | kappen |
supi :) Danke
aber wie dämlich ist dann die Aufgabe bitte? Das war ne Klausuraufgabe, wenn man für beide Fälle nix raus bekommt, geht man doch davon aus sich verrechnet zu haben..
|
|
|
|