Definition neuer Zufallsvar. < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:39 Do 10.05.2007 | Autor: | cutter |
Aufgabe | Es seien X und Y zwei st.u. Zufallsvariablen mit X~N(0,1) und P(Y=1)=P(Y=-1)=1/2.Definiere eine neue ZV Z:=XY.Zeigen Sie:
Z ist standardnormalverteilt, X und Z sind unkorreliert ,aber (X,Z) ist nicht multivariat normalverteilt |
Hallo Maeddls und Jungs=)
Ich weiss schon nicht wie die neue ZV Z aussieht. Normaleweise handelt es sich ja immer um eine Faltung aber hier weiss ich wirklich nicht wie ich damit weiterrechnen soll.
Danke im vorraus;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:40 Do 10.05.2007 | Autor: | DirkG |
Verwende einfach die Formel der totalen Wkt bzgl. der diskreten Zufallsgröße $Y$. Konkret heißt das bei der Berechnung der Verteilungsfunktion von $Z$:
[mm] $$\begin{array}{rcl} F_Z(t) &=& P(XY \leq t) = P(XY \leq t \bigm| Y=1)\cdot P(Y=1) + P(XY \leq t \bigm| Y=-1)\cdot P(Y=-1)\\ &\stackrel{!}{=}& P(X\cdot 1 \leq t \bigm| Y=1)\cdot P(Y=1) + P(X\cdot (-1) \leq t \bigm| Y=-1)\cdot P(Y=-1)\\ &=& P(X\leq t \bigm| Y=1)\cdot P(Y=1) + P(X\geq -t \bigm| Y=-1)\cdot P(Y=-1)\\ &=& P(X\leq t)\cdot P(Y=1) + P(X\geq -t)\cdot P(Y=-1)\end{array}$$
[/mm]
Es sollte klar sei, wie's weitergeht.
Die Kovarianzberechnung ist ganz einfach:
[mm] $$\operatorname{cov}(X,Z) [/mm] = E(XZ) - [mm] E(X)\cdot [/mm] E(Z) = E(X^2Y) - [mm] E(X)\cdot [/mm] E(Z) = [mm] E(X^2)\cdot [/mm] E(Y) - [mm] E(X)\cdot [/mm] E(Z) = [mm] 1\cdot 0-0\cdot [/mm] 0 = 0$$
Und das dritte schließlich: $(X,Z)$ ist nicht mal eine zweidimensional stetige Zufallsgröße, denn die gesamte Wahrscheinlichkeitsmasse ist entlang der beiden Geraden (!!!) $z=x$ und $z=-x$ konzentriert - damit kann es gar kein zweidimensional normalverteilter Zufallsvektor sein.
|
|
|
|