www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Differentialgleichung 1. Ord
Differentialgleichung 1. Ord < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 1. Ord: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Do 30.10.2008
Autor: cutter

Aufgabe
Gegeben ist die DGL:
[mm] x'(t)=\frac{x(t)^2}{t^2}+\frac{x(t)}{t}+1 [/mm]

Lösen Sie die DGL auf dem Intervall [mm] [1,\infty) [/mm] mit [mm] x(1)=x_0 \in \R [/mm]  

Hi,

ich habe das mit x=tu(t) substituiert. Es folgt:

[mm] (tu(t))'=u(t)^2+u(t)+1 [/mm] Mit Produktregel bin ich dann auf:

[mm] \frac{u(t)^2+1}{t}=u'(t) [/mm]

Dann hab ich Variablentrennung etc durchgefuehrt und bin auf :

u(t)=tan(ln(t))-c gekommen.

Muss ich beim Integrieren Grenzen betrachten oder kann ich einfach unbestimmt integrieren?
Ich seh das oft mit Grenzen und oft ohne.
Ist es den soweit richtig ?

Grüße




        
Bezug
Differentialgleichung 1. Ord: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Do 30.10.2008
Autor: rainerS

Hallo!

> Gegeben ist die DGL:
> [mm]x'(t)=\frac{x(t)^2}{t^2}+\frac{x(t)}{t}+1[/mm]
>  
> Lösen Sie die DGL auf dem Intervall [mm][1,\infty)[/mm] mit [mm]x(1)=x_0 \in \R[/mm]
> Hi,
>  
> ich habe das mit x=tu(t) substituiert. Es folgt:
>  
> [mm](tu(t))'=u(t)^2+u(t)+1[/mm] Mit Produktregel bin ich dann auf:
>  
> [mm]\frac{u(t)^2+1}{t}=u'(t)[/mm]
>  
> Dann hab ich Variablentrennung etc durchgefuehrt und bin
> auf :
>  
> u(t)=tan(ln(t))-c gekommen.

Das ist nicht ganz richtig, korrekt ist

[mm]u(t) = \tan (c+\ln t) [/mm]

> Muss ich beim Integrieren Grenzen betrachten oder kann ich
> einfach unbestimmt integrieren?

Das geht beides. Wenn du bestimtm integrierst, musst du die Anfangsbedingung gleich einbauen:

[mm] \integral_1^t \bruch{dt}{t} = \integral_{x_0}^u \bruch{du}{1+u^2} [/mm]

Wenn du das nicht tust, musst du die Integrationskonstante hinschreiben und durch Einsetzen der Anfangsbedingung bestimmen.

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]