www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differentialgleichung /Zerfall
Differentialgleichung /Zerfall < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung /Zerfall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Sa 10.03.2007
Autor: Methos

Aufgabe
Ein Kontrastmittel, das für Röntgenaufnahmen gespritzt wird, reichert sich in der Leber an. Dort wird es mit einer Rate abgebaut, die proportional zur vorhandenen Menge des Kontrastmittels ist. Die Leber wird zum Zeitpunkt t = 0 mit 0,75 g des Kontrastmittels belastet. Nach 2 Stunden lassen sich noch 0,747 g des Kontrastmittels in der Leber nachweisen.
a) Stellen Sie eine Differentialgleichung für die Funktion f(t) auf, welche die Masse des Kontrastmittels in Abhängigkeit von der Zeit beschreibt, und lösen Sie diese!
b) Man kann das obige Modell verfeinern, indem man annimmt, dass das Kontrastmittel über einen gewissen Zeitraum hinweg gleichmäßig über den Blutstrom in die Leber gelangt. Pro Stunde werden 0,1 g zugeführt. Beschreiben Sie diese Situation durch eine Differentialgleichung und lösen Sie diese!

Hi,
obiges Problem....
für a) stelle ich $f'(t) = -k [mm] \cdot [/mm] f(t)$ auf... nach Rumrechnen (Stammfunktion, etc.) kommt man auf $f(t) = f(0) [mm] \cdot e^{-k \cdot t}$ [/mm] und durch Einsetzen auf $f(t) = 0,75 [mm] \cdot e^{-0,002 \cdot t}$. [/mm]
Soweit noch richtig gerechnet???
Für b) hab ich jetzt aber überhaupt gar keine Ahnung, was man da für ne DGL aufstellen kann. Bitte um Hilfe.
Danke im Voraus
Gruß
Methos

        
Bezug
Differentialgleichung /Zerfall: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Sa 10.03.2007
Autor: HJKweseleit

An der Differenzialgleichnung ändert sich Folgendes:

Der Abbau beträgt nach wie vor -k*f(x) mit dem von dir errechneten k. Statt wie im ersten Fall von einem hohen Anfangswert auszugehen (0,75), der nur abgebaut wird, ist nun der Anfangswert 0. Dafür gibt es jetzt neben dem Abbau eine konstante Zufuhr f'(x)= c = 0,1. Beides miteinander verbunden ergibt
f'(x)=0,1-0,002*f(x) in den ersten 7,5 Stunden, Lösung noch unbekannt,
danach wieder nur f'(x)=-0,002*f(x) mit der Lösung [mm] f(x)=f(7,5)*e^{-0,002 x}, [/mm] wobei f(7,5) sich aus der ersten Lösung ergibt.

Bezug
                
Bezug
Differentialgleichung /Zerfall: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:49 Sa 10.03.2007
Autor: Methos

Hi, danke schonmal für die Antwort.
Was bedeutet aber "Lösung unbekannt". Ist die Gleichung nicht lösbar???
Komme nicht weiter
Gruß
Methos

Ich habe diese Frage in keinem anderen Internetforum gestellt.


Bezug
                        
Bezug
Differentialgleichung /Zerfall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 So 11.03.2007
Autor: Methos

Hat sich erledigt, hab durch Surfen und Recherchieren selbst herausgefunden, wie man eine solche DGL löst. Trotzdem danke für die Bemühungen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]