www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Differentialrechnung
Differentialrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Doppelintegral
Status: (Frage) beantwortet Status 
Datum: 23:17 Mo 20.06.2005
Autor: bastianboecking

Es sei G das gebiet in der x-y-ebene, das durch x=0,x=1,y=0 und y=-x²+2 begrenzt wird. skizzieren sie G und berechnen sie mit hilfe eines doppelintegrals die erste Koordinate sx des schwerpunktes S = (sx;sy)!

wie berechne ich das mit dem doppelintegral? Muss ich zuerst skizzieren oder erst rechnen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Di 21.06.2005
Autor: Bastiane


> Es sei G das gebiet in der x-y-ebene, das durch x=0,x=1,y=0
> und y=-x²+2 begrenzt wird. skizzieren sie G und berechnen
> sie mit hilfe eines doppelintegrals die erste Koordinate sx
> des schwerpunktes S = (sx;sy)!
>  
> wie berechne ich das mit dem doppelintegral? Muss ich
> zuerst skizzieren oder erst rechnen?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Hallo!
Wie wär's mal mit ner netten Anrede? ;-)

Also, ob du zuerst das Gebiet skizzierst oder zuerst das Integral berechnest, müsste eigentlich egal sein. Ich würde trotzdem erst das Gebiet skizzieren, damit du weißt, über was du eigentlich integrieren sollst, dann kannst du's dir einfach besser vorstellen. :-)

Für den Schwerpunkt müsste es eine Formel geben - bei uns war die bei so einer Aufgabe auf dem Übungsblatt angegeben, aber ich bin jetzt zu faul zum Suchen...
Aber du müsstest dafür wohl das Integral:

[mm] \integral_0^1{\integral_0^{-x^2+2}1\;dy\;dx} [/mm]

berechnen, wobei ich mir nicht ganz sicher bin, ob die zweite Integrationsgrenze jetzt stimmt (ist schon spät heute abend...)

Schaffst du da jetzt mal einen Anfang? (ich schätze, man darf die beiden Integrale vertauschen, und dann ist es einfacher zu rechnen ;-))

Viele Grüße und [gutenacht]

Bastiane
[cap]


Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Di 21.06.2005
Autor: bastianboecking

Hallo Bastiane,
Danke erstmal,also dann versuche ich das mal:

[mm] \integral_{2}^{0} [/mm] {x+1+ y}

[mm] \integral_{2}^{0} [/mm] [ y+xy+2/2 y²] ^ -x+1 und unten 0   *dx
stimmt das denn soweit?
lg

Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Di 21.06.2005
Autor: Fabian

Hallo Bastian,

Leider kann ich deinen Lösungsversuch nicht wirklich nachvollziehen! Deswegen fange ich mal von vorne an!

Bastiane hat dir ja schon den Tipp gegeben:


[mm] A=\int\limits_0^1 {\int\limits_0^{ - x^2 + 2} {dy \cdot dx} } [/mm]

Zuerst berechnen wir das Integral:


[mm] I=\integral_{0}^{-x^{2}+2}{dy} [/mm]   =>  [mm] I=-x^{2}+2 [/mm]

Jetzt berechnen wir das zweite Integral:


[mm] I=\integral_{0}^{1} {(-x^{2}+2)*dx} [/mm]  =>   [mm] I=\bruch{5}{3} [/mm]

Jetzt haben wir die Flächeninhalt bestimmt: [mm] A=\bruch{5}{3} [/mm]

Ich hoffe bis hier hin kannst du meine Rechnung nachvollziehen! Es handelt sich hier eigentlich um zwei Integrale, die nacheinander berechnet werden müssen!

Jetzt zu dem Schwerpunkt:

Dieser wird nach folgender Formel berechnet:

[mm] x_{s}=\bruch{1}{A}*\integral_{0}^{1}{\integral_{0}^{-x^{2}+2}x*dy*dx} [/mm]

[mm] y_{s}=\bruch{1}{A}*\integral_{0}^{1}{\integral_{0}^{-x^{2}+2}y*dy*dx} [/mm]

Jetzt kannst du ja mal versuchen alleine weiterzukommen!

Viele Grüße

Fabian

Bezug
                                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Mi 22.06.2005
Autor: bastianboecking

woher nimmst du jetzt die 5/3?

Bezug
                                        
Bezug
Differentialrechnung: Integral
Status: (Antwort) fertig Status 
Datum: 09:10 Mi 22.06.2005
Autor: Roadrunner

Guten Morgen Bastian!


> woher nimmst du jetzt die 5/3?

Berechne doch mal das bestimmte Integral $I \ = \ [mm] \integral_{0}^{1} {(-x^{2}+2)*dx}$ [/mm]  .

Was erhältst Du?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Differentialrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:06 Mi 22.06.2005
Autor: bastianboecking

den schwerpunkt:
kann ja jetzt A einsetzen, aber wie rechne ich das mit diesen doppelintegralen aus? multipliziere ich mit dem oberen dann mit dem unteren ich weiss nicht wie ich da ran gehen soll!






Bezug
                                        
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:09 Mi 22.06.2005
Autor: Fabian

Hallo Bastian,

Bitte schau dir doch noch mal meine Antwort an! Da steht die Vorgehensweise eigentlich genau drin! Bei Doppelintegralen geht man immer folgendermaßen vor:

Zuerst berechnet man das innere Integral und setzt das Ergebnis in das äußere Integral ein. Dieses integriert man dann wieder und man ist fertig!

Viele Grüße

Fabian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]