Eigenschaft Summe von Vektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie:
Sind die Vektoren [mm] v_1, v_2, [/mm] . . . , [mm] v_n [/mm] eines Vektorraumes V linear unabhängig, so sind auch die Vektoren [mm] w_i =\summe_{i=1}^{n} v_i [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] n linear unabhängig. |
also ist ja: [mm] w_1=\vec{v_1}, w_2=\vec{v_1}+\vec{v_2}, w_3=\vec{v_1}+\vec{v_2}+\vec{v_3}
[/mm]
Klar ist mir das schon, dass wenn die Summanden lin. unabhängig sind, dann auch die einzelnen Summen untereinander, die sich ja um mind. einen Summanden unterscheiden unabh. sein müssen.
Wie kann ich das nun nett in Form eines Beweises aufschreiben, oder reicht das schon?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:26 Mo 15.01.2007 | Autor: | DaMenge |
Hi und ,
in deiner Formel ist ein wenig was falsch gelaufen, oder?
also die summe fuer [mm] w_i [/mm] soll bestimmt nur bis i gehen und der Index der Summe soll bestimmt anders heissen als i...
aber du hast ja auch die ersten drei [mm] w_i [/mm] mal extra hingeschrieben, so dass man weiss, was du meinst.
also prosa schreiben allein reicht wohl nicht, du musst schon die Definition von linearer unabhaengigkeit verwenden !
Ich wuerde deine aufgabe mit Widerspruch loesen, also ein solcher Ansatz:
angenommen die [mm] w_i [/mm] waeren abhaengig, dann gibt es eine nicht-triviale Darstellung der 0, wie folgt:
[mm] $a_1*w_1+\ldots +a_n*w_n=0$ [/mm] mit mindestens einem [mm] $a_i\not= [/mm] 0$
Jetzt setze doch mal fuer jedes [mm] w_i [/mm] die Darstellung als Summe der [mm] v_i [/mm] ein und fasse alles zusammen auf der linken Seite, was hast du dann gefunden, wenn mindestens ein [mm] $a_i\not= [/mm] 0$ gilt?
viele Gruesse
DaMenge
|
|
|
|
|
Ok. Hatte das so ähnlich probiert, jedoch ohne Erfolg.
Hier nochmal:
es gilt:
[mm] a_1\vec{w_1}+a_2\vec{w_2}+...+a_3\vec{w_n} [/mm] = 0 mit [mm] a_n\not=0, [/mm] wenn lin. abhängig.
[mm] a_1\summe_{i=1}^{1}v_i+a_2\summe_{i=1}^{2}v_i+a_3\summe_{i=1}^{3}v_i+...+a_2\summe_{i=1}^n v_i=0
[/mm]
[mm] (a_1v_1)+(a_2(v_1+v_2)+...+(a_n(v_1+v_2+...+v_n))=0
[/mm]
[mm] v_1(a_1+a_2+...+a_n)+v_2(a_2+a_3+...+a_n)+...+v_n(a_n)=0
[/mm]
Kann ich jetzt sagen, dass [mm] (a_1+a_2+...+a_n)=0 [/mm] usw. sein muß, da laut vorraussetzung [mm] v_1+v_2 [/mm] oder [mm] v_1+v_2+v_3 [/mm] nich 0 sein dürfen, da lin. unabh.?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:14 Mo 15.01.2007 | Autor: | DaMenge |
Hallo,
> [mm]a_1\vec{w_1}+a_2\vec{w_2}+...+a_3\vec{w_n}[/mm] = 0 mit
> [mm]a_n\not=0,[/mm] wenn lin. abhängig.
>
> [mm]a_1\summe_{i=1}^{1}v_i+a_2\summe_{i=1}^{2}v_i+a_3\summe_{i=1}^{3}v_i+...+a_2\summe_{i=1}^n v_i=0[/mm]
>
> [mm](a_1v_1)+(a_2(v_1+v_2)+...+(a_n(v_1+v_2+...+v_n))=0[/mm]
> [mm]v_1(a_1+a_2+...+a_n)+v_2(a_2+a_3+...+a_n)+...+v_n(a_n)=0[/mm]
>
da sind zwar ein paar tippos drin, aber die letzte zeile ist schon genau das, was ich meinte, ja !
> Kann ich jetzt sagen, dass [mm](a_1+a_2+...+a_n)=0[/mm] usw. sein
> muß, da laut vorraussetzung [mm]v_1+v_2[/mm] oder [mm]v_1+v_2+v_3[/mm] nich 0
> sein dürfen, da lin. unabh.?
hier kann ich dir nicht ganz folgen..
Was versuchst du denn da?
Versuchst du einen Widerspruch zu erzeugen oder versuchst du dir ekt zu zeigen, dass alle [mm] a_i [/mm] gleich 0 sein muessen (weil die [mm] v_i [/mm] ja als linear unabhaengig vorrausgesetzt waren) ?!?
Das solltest du also nochmal genau machen und ruhig auch aufschreiben, wovon du ausgehst und was woraus folgt...
viele Gruesse
DaMenge
|
|
|
|
|
Erstmal ein dickes Danke! für die Hilfe.
Beweis komplett:
sei [mm] v_1, v_2,...,v_n [/mm] je lin. unabh.
[mm] \Rightarrow a_1v_1+a_2v_2+a_3v_3+...+a_nv_n=0 [/mm] mit [mm] a_n=0 [/mm] und somit ** [mm] \summe_{i=1}^n a_i [/mm] =0 [mm] 1\le i\le [/mm] n
zeige:
[mm] a_1\vec{w_1}+a_2\vec{w_2}+...+a_n\vec{w_n} [/mm] =
[mm] a_1\summe_{i=1}^{1}v_i+a_2\summe_{i=1}^{2}v_i+a_3\summe_{i=1}^{3}v_i+...+a_2\summe_{i=1}^n v_i=
[/mm]
[mm] (a_1v_1)+(a_2(v_1+v_2)+...+(a_n(v_1+v_2+...+v_n))=
[/mm]
[mm] v_1(a_1+a_2+...+a_n)+v_2(a_2+a_3+...+a_n)+...+v_n(a_n)=0, [/mm] den nach Voraussetzung gilt: (**) [mm] \Box
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:01 Mo 15.01.2007 | Autor: | DaMenge |
Hallo,
> Beweis komplett:
> sei [mm]v_1, v_2,...,v_n[/mm] je lin. unabh.
> [mm]\Rightarrow a_1v_1+a_2v_2+a_3v_3+...+a_nv_n=0[/mm] mit [mm]a_n=0[/mm]
> und somit ** [mm]\summe_{i=1}^n a_i[/mm] =0 [mm]1\le i\le[/mm] n
>
ok, also willst du es direkt beweisen, na gut.
> zeige:
> [mm]a_1\vec{w_1}+a_2\vec{w_2}+...+a_n\vec{w_n}[/mm] = ...
nein, was du jetzt zeigen musst ist:
[mm] $b_1\vec{w_1}+b_2\vec{w_2}+...+b_n\vec{w_n}=0 \Rightarrow b_i=0 \forall [/mm] i$
(verwende deine [mm] a_i [/mm] nicht doppelt, sonst kommt nur Verwirrung auf)
also musst du nach der Umformung zu:
> [mm][mm] v_1(b_1+b_2+...+b_n)+v_2(b_2+b_3+...+b_n)+...+v_n(b_n)=0
[/mm]
noch folgern, dass alle [mm] b_i=0 [/mm] sind, weil alle Koeffizienten vor den [mm] v_i [/mm] gleich 0 sein müssen !
viele Grüße
DaMenge
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:09 Mo 15.01.2007 | Autor: | pleaselook |
Gut. Meinte das auch so.
Danke nochmal.
|
|
|
|