www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Epsilon-Umgebung
Epsilon-Umgebung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Umgebung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Mi 13.02.2008
Autor: Cuchulainn

Aufgabe
Gegeben sei die Folge [mm] a_{n} [/mm] = [mm] \bruch{n^{2} - 5}{n^{2} + 3}. [/mm] Sei [mm] \varepsilon [/mm] eine kleine positive Zahl (z.B. [mm] \varepsilon [/mm] = [mm] 10^{-12}). [/mm] Für welche Indizes n gilt [mm] |a_{n} [/mm] - 1| < [mm] \varepsilon? [/mm]

Ich nehme an, dass ich diese Ungleichung lösen muss: [mm] |\bruch{n^{2} - 5}{n^{2} + 3} [/mm] - 1| < [mm] \varepsilon. [/mm]

Dann muss ich doch zwei Fälle unterscheiden:

1. [mm] \bruch{n^{2} - 5}{n^{2} + 3} [/mm] - 1 [mm] \ge [/mm] 0 und
2. [mm] \bruch{n^{2} - 5}{n^{2} + 3} [/mm] - 1 < 0.

Für den ersten Fall komme ich dann auf die leere Menge, für den zweiten Fall auf 2 + 3 [mm] \varepsilon [/mm] < - [mm] \varepsilon [/mm] * [mm] n^{2} [/mm] + [mm] 2n^{2}. [/mm] Aber hier hakt es dann. Bin ich auf dem richtigen Weg oder ist alles falsch, was ich hier mache?

Diese Frage habe ich in keinem anderen Forum gestellt.

        
Bezug
Epsilon-Umgebung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Mi 13.02.2008
Autor: Gogeta259

Es lohnt sich erst mal [mm] a_{n} [/mm] umzuschreiben:

[mm] a_{n}=\bruch{n^2-5}{n^2+3}=\bruch{n^2+(+3-3)-5}{n^2+3} [/mm]
[mm] =\bruch{n^2+3-8}{n^2+3}=1-\bruch{8}{n^2+3} [/mm]

Jetzt setzen wir dies in die Ungleichung ein:
[mm] |a_{n}-1|=|(1-\bruch{8}{n^2+3})-1|=|-\bruch{8}{n^2+3}| [/mm]
[mm] =|\bruch{8}{n^2+3})|<\epsilon [/mm]

Da [mm] \bruch{8}{n^2+3} [/mm] stets größer als null ist können wir die Betragsstriche weglassen. Es folgt
[mm] \bruch{8}{n^2+3})<\epsilon [/mm]

==> division mit [mm] \epsilon [/mm] und multiplikation mit [mm] (n^2+3) [/mm] ergibt:
[mm] \bruch{8}{\epsilon}
==> (0< [mm] )\bruch{8}{\epsilon}-3 ==> [mm] \wurzel{\bruch{8}{\epsilon}-3}
jetzt tippst du dein [mm] \epsilon [/mm] ein und dann rundest du auf und hast dein n ab welchem diese Bedingung gilt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]