www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Erwartungstreue
Erwartungstreue < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungstreue: Varianz
Status: (Frage) beantwortet Status 
Datum: 12:40 Sa 19.01.2013
Autor: Mousegg

Aufgabe
Seien [mm] X_1;..;X_n [/mm] unabhäangige und identisch verteilte Zufallsvariablen, sowie X = [mm] 1/n*\summe_{i=1}^{n}X_i [/mm]
deren empirischer Erwartungswert. Zeigen Sie, dass die empirische Varianz
[mm] s2_n =1/(n-1)\summe_{i=1}^{n}(X_i-X)^2 [/mm] als Schätzer für die Varianz von [mm] X_1 [/mm] erwartungstreu ist.

Hallo,
ich habe einige Schwierigkeiten mit dieser Aufgabe, was aber vielleicht auch daran liegt, dass ich das Konzept der Erwarrungstreue noch nicht ganz verstanden habe.

Falls ich es aber richtig verstehe,ist folgendes zu zeigen.(E soll der Erwartungswert sein)
Man möchte den Wert der Varianz von [mm] X_1 [/mm] also [mm] E(X_1^2)-E(X_1)^2 [/mm] schätzen. Als Schätzer wähle ich [mm] s2_n =1/(n-1)\summe_{i=1}^{n}(X_i-X)^2. [/mm]
Also ist zu zeigen:
[mm] E_\gamma(1/(n-1)\summe_{i=1}^{n}(X_i-X)^2)=E(X_1^2)-E(X_1)^2 [/mm]

Bisher komme ich dann leider wenn ich die Liniarität des Erwartungswertes auszunutzen versuchen nicht auf das gesuchte Ergebnis.
Ich frage mich daher ob das der Richtige Ansatz ist?
Ich hoffe mir kann jemand weiterhelfen

viele Grüße

        
Bezug
Erwartungstreue: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Sa 19.01.2013
Autor: luis52

Moin, deine Ueberlegungen sind korrekt. Deine Aufgabe wird []hier, Seite 229-230, behandelt.

vg Luis

Bezug
                
Bezug
Erwartungstreue: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Sa 26.01.2013
Autor: Mousegg

Ja vielen Dank der Beweis war nach längerem Überlegen dann doch nachvollziehbar. Wiedermal danke für den Tipp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]