www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Erwartungswert Varianz
Erwartungswert Varianz < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Fr 02.01.2009
Autor: Nataliee

Aufgabe
Es bezeichne [mm] X_{1} [/mm] die Laufzeit des ursprünglichen Algorithmus und [mm] X_{2} [/mm] die Laufzeit eines neuen Algorithmus.
Die Lösung ergibt [mm] E(X_2) \le E(X_1) [/mm] (oder [mm] \ge) [/mm] genau dann, wenn [mm] \bruch{1+p}{p}\le\bruch{k_1}{k_2} [/mm] (oder [mm] \ge) [/mm]  gilt.

(a) Berechnen Sie [mm] Var(X_1) [/mm] und [mm] Var(X_2). [/mm]
(b) Wann ist [mm] Var(X_2) [/mm] < [mm] Var(X_1)? [/mm]
(c) Zeigen Sie: Ist [mm] E(X_1) [/mm] = [mm] E(X_2), [/mm] so gilt [mm] Var(X_1) [/mm] < [mm] Var(X_2). [/mm]
Damit ist der ursprüngliche Algorithmus vorzuziehen, wenn extrem lange Laufzeiten überproportionale Kosten verursachen.
(Hinweis: Die Betrachtung des Parameters [mm] \bruch{k_2}{k_1} [/mm] ist nützlich.)

Hallo,
die Erwartungswerte mit [mm] E(X_1)=pk_1+(1-p)k_2 [/mm] und [mm] E(X_2)=\bruch{k_1}{p} [/mm]
wurden in einer anderen Aufgabe berechnet.

bei a) wende ich das Verschiebunggesetz an:
[mm] Var(X_1)= E(X_1^2)-(E(X_1))^2= E(X_1^2)-(pk_1+(1-p)k_2)^2 [/mm]

[mm] Var(X_2)= E(X_2^2)-(E(X_2))^2= E(X_2^2)-(\bruch{k_1}{p})^2 [/mm]

Wie kann ich hier [mm] E(X_1^2) [/mm] bzw. [mm] E(X_2^2) [/mm] berechnen?

Schönene Gruß

        
Bezug
Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Fr 02.01.2009
Autor: felixf

Hallo

> Es bezeichne [mm]X_{1}[/mm] die Laufzeit des ursprünglichen
> Algorithmus und [mm]X_{2}[/mm] die Laufzeit eines neuen
> Algorithmus.
>  Die Lösung ergibt [mm]E(X_2) \le E(X_1)[/mm] (oder [mm]\ge)[/mm] genau dann,
> wenn [mm]\bruch{1+p}{p}\le\bruch{k_1}{k_2}[/mm] (oder [mm]\ge)[/mm]  gilt.
>  
> (a) Berechnen Sie [mm]Var(X_1)[/mm] und [mm]Var(X_2).[/mm]
>  (b) Wann ist [mm]Var(X_2)[/mm] < [mm]Var(X_1)?[/mm]
>  (c) Zeigen Sie: Ist [mm]E(X_1)[/mm] = [mm]E(X_2),[/mm] so gilt [mm]Var(X_1)[/mm] <
> [mm]Var(X_2).[/mm]
>  Damit ist der ursprüngliche Algorithmus vorzuziehen, wenn
> extrem lange Laufzeiten überproportionale Kosten
> verursachen.
>  (Hinweis: Die Betrachtung des Parameters [mm]\bruch{k_2}{k_1}[/mm]
> ist nützlich.)
>
>  Hallo,
>  die Erwartungswerte mit [mm]E(X_1)=pk_1+(1-p)k_2[/mm] und
> [mm]E(X_2)=\bruch{k_1}{p}[/mm]
>  wurden in einer anderen Aufgabe berechnet.

Da dies wohl Teil einer groesseren Aufgabe ist, kannst du uns mehr Infos liefern? Ich denke ohne weitere Informationen kann man diesen Teil nicht loesen.

> bei a) wende ich das Verschiebunggesetz an:
>  [mm]Var(X_1)= E(X_1^2)-(E(X_1))^2= E(X_1^2)-(pk_1+(1-p)k_2)^2[/mm]
>  
> [mm]Var(X_2)= E(X_2^2)-(E(X_2))^2= E(X_2^2)-(\bruch{k_1}{p})^2[/mm]
>  
> Wie kann ich hier [mm]E(X_1^2)[/mm] bzw. [mm]E(X_2^2)[/mm] berechnen?

Dazu muss man mehr ueber [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] wissen.

LG Felix


Bezug
                
Bezug
Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Fr 02.01.2009
Autor: Nataliee

Hallo felixf,
über diese Aufgabenstellung wurden die Erwartungswerte bestimmt.

Für [mm] X_1: [/mm]
Sei X die Laufzeit eines Algorithmus,
der  nach [mm] k_1 [/mm] Schritten mit Wahrscheinlichkeit p und mit
W-keit 1-p nach [mm] k_2 [/mm] Schritten terminiert (k1 < k2).
=>$ [mm] E(X_1)=pk_1+(1-p)k_2 [/mm] $

Für [mm] X_2 [/mm] wird der 1. Algorithmus abgeändert:
Bei nicht erfolgter Ausgabe nach k1 Schritten wird der Algorithmus jeweils stets neu gestartet (dabei ist das Ergebnis des nächsten Durchlaufs "unabhängig" von der Vorgeschichte).
=>$ [mm] E(X_2)=\bruch{k_1}{p} [/mm] $

Dies Lösung wurden schon in einer Übung besprochen.




Bezug
                        
Bezug
Erwartungswert Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:13 Sa 03.01.2009
Autor: felixf

Hallo

>  über diese Aufgabenstellung wurden die Erwartungswerte
> bestimmt.
>  
> Für [mm]X_1:[/mm]
>  Sei X die Laufzeit eines Algorithmus,
> der  nach [mm]k_1[/mm] Schritten mit Wahrscheinlichkeit p und mit
> W-keit 1-p nach [mm]k_2[/mm] Schritten terminiert (k1 < k2).
>  =>[mm] E(X_1)=pk_1+(1-p)k_2[/mm]

Exakt.

> Für [mm]X_2[/mm] wird der 1. Algorithmus abgeändert:
>  Bei nicht erfolgter Ausgabe nach k1 Schritten wird der
> Algorithmus jeweils stets neu gestartet (dabei ist das
> Ergebnis des nächsten Durchlaufs "unabhängig" von der
> Vorgeschichte).
>  =>[mm] E(X_2)=\bruch{k_1}{p}[/mm]

Genau.

> Dies Lösung wurden schon in einer Übung besprochen.

Und damit erhaelst du [mm] $E(X_1^2) [/mm] = p [mm] k_1^2 [/mm] + (1 - p) [mm] k_2^2$: [/mm] die Zufallsvariable [mm] $X_1^2$ [/mm] nimmt mit Wahrscheinlichkeit $p$ den Wert [mm] $k_1^2$ [/mm] an, und mit Wahrscheinlichkeit $1 - p$ den Wert [mm] $k_2^2$. [/mm]

Den Erwartungswert fuer [mm] $X_2^2$ [/mm] darfst du jetzt selber bestimmen.

LG Felix


Bezug
                                
Bezug
Erwartungswert Varianz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:12 Sa 03.01.2009
Autor: Nataliee

gelöscht
Bezug
                                        
Bezug
Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Sa 03.01.2009
Autor: Nataliee


Bezug
                                        
Bezug
Erwartungswert Varianz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 05.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Erwartungswert Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 04.01.2009
Autor: Nataliee

gelöscht
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]