Euklidischer Algorithmus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:32 Fr 04.11.2016 | Autor: | Attila |
Hallo,
ich beschäftige mich gerade damit, Zahlen aus verschiedenen Zahlsystemen ineinander umzurechnen. Das Verfahren als solches ist mir bekannt, allerdings ist mir nicht ganz klar wieso hier die Reste euklidischen Algorithmus die entsprechenden Platzhalter im neuen Stellenwertsystem angeben. Könnte mir jemand erklären wie dieses Vorgehen, dass man die Reste nimmt und diese dann als Darstellung in der g-adischen Schreibweise nutzt?
Viele Grüße,
Attila
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:53 Sa 05.11.2016 | Autor: | leduart |
Hallo
ich verstehe die Frage nicht, kannst du an einem Beispiel sagen, was du meinst, oder einen link zu einer Seite, wo das gemacht wird?
Gruß leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:57 Sa 05.11.2016 | Autor: | felixf |
Moin!
> ich beschäftige mich gerade damit, Zahlen aus
> verschiedenen Zahlsystemen ineinander umzurechnen. Das
> Verfahren als solches ist mir bekannt, allerdings ist mir
> nicht ganz klar wieso hier die Reste euklidischen
> Algorithmus die entsprechenden Platzhalter im neuen
> Stellenwertsystem angeben. Könnte mir jemand erklären wie
> dieses Vorgehen, dass man die Reste nimmt und diese dann
> als Darstellung in der g-adischen Schreibweise nutzt?
Kann es sein, dass du nicht den euklidischen Algorithmus (zur Bestimmung des grössten gemeinsamen Teilers) meinst, sondern die Division mit Rest (die ebenfalls im euklidischen Algorithmus verwendet wird)?
Dazu: wenn [mm] $a_0, a_1, a_2, [/mm] ...$ die Ziffern in der $g$-adischen Schreibweise sind, dann ist der Wert der Zahl $n$ ja $n = [mm] a_0 g^0 [/mm] + [mm] a_1 g^1 [/mm] + [mm] a_2 g^2 [/mm] + [mm] a_3 g^3 [/mm] + ...$. Wenn du jetzt $n$ durch $g$ mit Rest teilst, bekommst du $n = x [mm] \cdot [/mm] g + y$ mit $0 [mm] \le [/mm] y < g$, und $y$ ist eindeutig. Da jedoch auch $x = [mm] (a_1 g^0 [/mm] + [mm] a_2 g^1 [/mm] + [mm] a_3 g^2 [/mm] + ...) [mm] \cdot [/mm] g + [mm] a_0$ [/mm] ist, muss $y = [mm] a_0$ [/mm] sein. Damit liefert Division mit Rest durch $g$ als ersten Rest schonmal die Ziffer [mm] $a_0$. [/mm] Der Quotient ist [mm] $a_1 g^0 [/mm] + [mm] a_2 g^1 [/mm] + [mm] a_3 g^2 [/mm] + ...$, und wenn du hier wieder Division mit Rest durch $g$ machst, bleibt diesmal [mm] $a_1$ [/mm] als Rest. Wenn du so weitermachst erhälst du [mm] $a_2$, $a_3$, [/mm] etc.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:04 Sa 05.11.2016 | Autor: | Attila |
Hi,
vielen Dank, das war genau das, was ich suchte, auch wenn ich mich leider etwas sperrig oder ungenau ausgedrückt habe. Vielen Dank für eure Hilfe.
Viele Grüße,
Attila
|
|
|
|