Euler und Additionstheorem < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:09 Mo 27.04.2015 | Autor: | murmel |
Aufgabe | Es soll die Superposition aus [mm] $g_1(x,t) [/mm] + [mm] g_2(x,t)$ [/mm] gebildet und in [mm] $B(\varphi) \cos\left(kx-\omega t+\frac{\varphi}{2}\right)$ [/mm] überführt werden! |
Ich bin soweit gekommen:
[mm] g_1(x,t)= A\,\cos(kx - \omega t)[/mm]
[mm]g_2(x,t) = A\,\cos(kx - \omega t + \varphi)[/mm]
Allgmein ist gegeben:
[mm]
\cos(\gamma) =\frac{1}{2}\,\mathrm{e}^{\mathrm{i}\gamma} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}\gamma}
[/mm]
(korrigiert, danke Fred97!)
[mm]\gamma_1 = kx - \omega t[/mm]
[mm]\gamma_2 = kx - \omega t + \varphi[/mm]
[mm] g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}\gamma_1} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}\gamma_1} + \frac{1}{2}\,\mathrm{e}^{\mathrm{i}\gamma_2} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}\gamma_2}\right][/mm]
[mm] g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx - \omega t)} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}(kx - \omega t)} + \frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx - \omega t + \varphi)} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}(kx - \omega t + \varphi)}\right][/mm]
[mm] g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx)}\mathrm{e}^{-\mathrm{i}\omega t}
+\frac{1}{2}\,\mathrm{e}^{-\mathrm{i}(kx)}\mathrm{e}^{\mathrm{i}\omega t} + \frac{1}{2}\,\mathrm{e}^{\mathrm{i}kx} \,\mathrm{e}^{-\mathrm{i}\omega t}\,\mathrm{e}^{\mathrm{i}\varphi} + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}kx} \,\mathrm{e}^{\mathrm{i}\omega t}\,\mathrm{e}^{-\mathrm{i}\varphi}\right][/mm]
Durch weiteres Sortieren und Umformen erhalte ich:
[mm] g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx)}\mathrm{e}^{-\mathrm{i}\omega t}
+ \frac{1}{2}\,\mathrm{e}^{\mathrm{i}kx} \,\mathrm{e}^{-\mathrm{i}\omega t}\,\mathrm{e}^{\mathrm{i}\varphi} + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}(kx)}\mathrm{e}^{\mathrm{i}\omega t} + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}kx} \,\mathrm{e}^{\mathrm{i}\omega t}\,\mathrm{e}^{-\mathrm{i}\varphi}\right][/mm]
Ausklammern:
[mm] g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx)}\mathrm{e}^{-\mathrm{i}\omega t}
\left(1 + \mathrm{e}^{\mathrm{i}\varphi}\right) + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}(kx)}\mathrm{e}^{\mathrm{i}\omega t} \left( 1 + \mathrm{e}^{-\mathrm{i}\varphi}\right)\right][/mm]
Ab hier bin ich mit meinem Latein am Ende. Muss ich den Klammerausdruck durch ein Additionstheorem ersetzen oder habe ich etwas übersehen und komme schon viel früher auf das zu zeigende Resultat?
Danke für Hilfe im Voraus
Murmel
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:34 Mo 27.04.2015 | Autor: | Pi_Quadrat |
>Klammerausdruck durch ein Additionstheorem ersetzen
Probier mal genau das.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:39 Mo 27.04.2015 | Autor: | murmel |
Danke :o)
Das mache ich mal...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:48 Mo 27.04.2015 | Autor: | fred97 |
> Es soll die Superposition aus [mm]g_1(x,t) + g_2(x,t)[/mm] gebildet
> und in [mm]B(\varphi) \cos\left(kx-\omega t+\frac{\varphi}{2}\right)[/mm]
> überführt werden!
>
> Ich bin soweit gekommen:
>
> [mm]g_1(x,t)= A\,\cos(kx - \omega t)[/mm]
> [mm]g_2(x,t) = A\,\cos(kx - \omega t + \varphi)[/mm]
>
>
> Allgmein ist gegeben:
> [mm]
2 \cos(\gamma) = \cos(\gamma)+\mathrm{i} \, \sin(\gamma)+ \cos(\gamma) - \mathrm{i} \, \sin(\gamma) =\frac{1}{2}\,\mathrm{e}^{\mathrm{i}\gamma} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}\gamma}
[/mm]
Das letzte "=" ist falsch
Es ist [mm] 2cos(x)=e^{ix}+e^{-ix}
[/mm]
FRED
>
>
> [mm]\gamma_1 = kx - \omega t[/mm]
> [mm]\gamma_2 = kx - \omega t + \varphi[/mm]
>
> [mm]g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}\gamma_1} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}\gamma_1} + \frac{1}{2}\,\mathrm{e}^{\mathrm{i}\gamma_2} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}\gamma_2}\right][/mm]
>
> [mm]g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx - \omega t)} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}(kx - \omega t)} + \frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx - \omega t + \varphi)} +\frac{1}{2}\, \mathrm{e}^{-\mathrm{i}(kx - \omega t + \varphi)}\right][/mm]
>
> [mm]g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx)}\mathrm{e}^{-\mathrm{i}\omega t}
+\frac{1}{2}\,\mathrm{e}^{-\mathrm{i}(kx)}\mathrm{e}^{\mathrm{i}\omega t} + \frac{1}{2}\,\mathrm{e}^{\mathrm{i}kx} \,\mathrm{e}^{-\mathrm{i}\omega t}\,\mathrm{e}^{\mathrm{i}\varphi} + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}kx} \,\mathrm{e}^{\mathrm{i}\omega t}\,\mathrm{e}^{-\mathrm{i}\varphi}\right][/mm]
>
> Durch weiteres Sortieren und Umformen erhalte ich:
>
> [mm]g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx)}\mathrm{e}^{-\mathrm{i}\omega t}
+ \frac{1}{2}\,\mathrm{e}^{\mathrm{i}kx} \,\mathrm{e}^{-\mathrm{i}\omega t}\,\mathrm{e}^{\mathrm{i}\varphi} + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}(kx)}\mathrm{e}^{\mathrm{i}\omega t} + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}kx} \,\mathrm{e}^{\mathrm{i}\omega t}\,\mathrm{e}^{-\mathrm{i}\varphi}\right][/mm]
>
>
> Ausklammern:
>
> [mm]g_1(x,t)+ g_2(x,t) = A \left[\frac{1}{2}\,\mathrm{e}^{\mathrm{i}(kx)}\mathrm{e}^{-\mathrm{i}\omega t}
\left(1 + \mathrm{e}^{\mathrm{i}\varphi}\right) + \frac{1}{2}\,\mathrm{e}^{-\mathrm{i}(kx)}\mathrm{e}^{\mathrm{i}\omega t} \left( 1 + \mathrm{e}^{-\mathrm{i}\varphi}\right)\right][/mm]
>
>
> Ab hier bin ich mit meinem Latein am Ende. Muss ich den
> Klammerausdruck durch ein Additionstheorem ersetzen oder
> habe ich etwas übersehen und komme schon viel früher auf
> das zu zeigende Resultat?
>
>
> Danke für Hilfe im Voraus
> Murmel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:25 Mo 27.04.2015 | Autor: | leduart |
Halloi
wenn du das Ziel vor Augen hast, (die [mm] \ph/2 [/mm] im Ergebnis) ist leichter zu zerlegen
du hast
[mm] cos(a)+cos(a+\phi) [/mm] schreibe um in
[mm] cos(a)=cos(a+\phi/2-\phi/2)
[/mm]
[mm] cos(a+\phi)=cos(a+\phi/2+\phi/2)
[/mm]
dann die Additionstheoreme für cos(x+y) und cos(x-y) mit [mm] x=a+\phi/2; y=\phi/2
[/mm]
ob du dabei die Eulerformel verwendest oder nicht ist egal.
Gruß leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:43 Mo 27.04.2015 | Autor: | Marcel |
Hallo,
> Es soll die Superposition aus [mm]g_1(x,t) + g_2(x,t)[/mm] gebildet
> und in [mm]B(\varphi) \cos\left(kx-\omega t+\frac{\varphi}{2}\right)[/mm]
> überführt werden!
>
>
>
> Ich bin soweit gekommen:
>
> [mm]g_1(x,t)= A\,\cos(kx - \omega t)[/mm]
> [mm]g_2(x,t) = A\,\cos(kx - \omega t + \varphi)[/mm]
nur mal so als Alternativansatz: Versuche, aus der geforderten Gleichung
[mm] $A\,\cos(kx [/mm] - [mm] \omega t)+A\,\cos(kx [/mm] - [mm] \omega [/mm] t + [mm] \varphi)\red{\;\stackrel{!}{=}\;}B(\varphi) \cos\left(kx-\omega t+\frac{\varphi}{2}\right)$
[/mm]
[mm] $B:=B(\varphi)$ [/mm] zu berechnen [mm] ($B\,$ [/mm] darf also von [mm] $\varphi$ [/mm] abhängen; nicht
aber von [mm] $k\,$ [/mm] oder [mm] $x\,$ [/mm] oder ...):
[mm] $B=A*\frac{\exp(i(kx-\omega t))+\exp(\,-i(kx-\omega t))+\exp(i(kx-\omega t+\varphi))+\exp(\,-i(kx-\omega t+\varphi))}{\exp(i(kx-\omega t+\varphi/2))+\exp(\,-i(kx-\omega t+\varphi/2))}$
[/mm]
[mm] $=A*\frac{\exp(i(kx-\omega t+\varphi/2-\varphi/2))+\exp(\,-i(kx-\omega t+\varphi/2-\varphi/2))+\exp(i(kx-\omega t+\varphi/2+\varphi/2))+\exp(\,-i(kx-\omega t+\varphi/2+\varphi/2))}{\exp(i(kx-\omega t+\varphi/2))+\exp(\,-i(kx-\omega t+\varphi/2))}$
[/mm]
usw.
Sollte also i.W. der selbe Trick sein, wie Leduart vorgeschlagen hat, den
man am Ende *braucht*.
P.S. Bedenke, dass [mm] $\exp(z+w)=\exp(z)*\exp(w)$ [/mm] auch für $z,w [mm] \in \IC\,.$ [/mm] Und dann
schau, wo Du "im Zähler den Nenner wiederfindest" (ggf. auch auf
"konjugiert komplex" achten).
P.P.S. Oben habe ich *direkt* schon sowas wie [mm] $\frac{1/2}{1/2}=1$ [/mm] ausgenutzt!
Und strenggenommen müßte man auch noch einen Hinweis setzen - denn
durch Null wollen wir nicht teilen.
Gruß,
Marcel
|
|
|
|