www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:47 Mo 19.06.2006
Autor: jojo1484

Aufgabe
f(x) = (x-5) * [mm] e^x [/mm]
a) Wie kann man Extremstellen der Funktion rechnerisch bestimmen?
b) Die Funktion f gehört zur Funktionenschar g mit g(x) = a(x - d) [mm] e^x [/mm]
Was für ein Zusammenhang besteht hier?

zu a: ich muss diese Funktion ja ableiten, damit ich dann f'(x) = 0 setzten kann! aber wie leite ich die Funktion ab?

f'(x) = (1 * [mm] e^x) [/mm] + ((x - 5) * [mm] e^x [/mm]
f'(x) = [mm] e^x [/mm] + [mm] xe^x [/mm] - [mm] 5e^x [/mm]
f'(x) = (1 + x -5) [mm] e^x [/mm]

so??
und dann:

0 = (1 + x - 5) * [mm] e^x [/mm]             ln(...)
???? was muss ich jetzt machen???


zu b: was besteht hier für ein zusammenhang??


hoffentlich kann mir jemand helfen!! vielen dank bereits für eure hilfe!

Mfg jojo1484


        
Bezug
Exponentialfunktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 13:55 Mo 19.06.2006
Autor: Roadrunner


> f'(x) = (1 * [mm]e^x)[/mm] + ((x - 5) * [mm]e^x[/mm]
> f'(x) = [mm]e^x[/mm] + [mm]xe^x[/mm] - [mm]5e^x[/mm]
> f'(x) = (1 + x -5) [mm]e^x[/mm]

[ok] Richtig, aber fasse doch noch weiter zusammen zu:

$f'(x) \ = \ [mm] (x-4)*e^x$ [/mm]

  

> 0 = (1 + x - 5) * [mm]e^x[/mm]             ln(...)

Wende hier das Prinzip des Nullproduktes an: ein Produkt ist genau dann gleich Null, wenn mind. einer der Faktoren gleich Null wird.

Also:  $x-4 \ = \ 0$   oder   [mm] $e^x [/mm] \ = \ 0$


> zu b: was besteht hier für ein zusammenhang??

Diese Fragestellung erschließt sich mir nicht so ganz. Ich würde schreiben: Für die o.g. Funktion muss gelten: $a \ = \ 1$  sowie  $d \ = \ 5$ .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]