Extremwertproblem: Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:31 Do 16.09.2010 | Autor: | Crashday |
Halihalo,
-> Erledigt <-
Vielen Dank schon mal für die Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
EDIT: Das war die Aufgabe:
Halihalo,
ich habe ein Problem mit meinen Mathehausaufgaben. Das erste Problem ist eine Extremwertaufgabe: Die Funktion f schließt mit der x-Achse eine Fläche ein und dieser Fläche wird als ein rechtwinkliges Dreieck mit den Punkten A(-2/0), B(x/0) und C(x/f(x) eingefügt. Jetzt wird der Maximale Flächeninhalt des Dreieckes gesucht. Wie lauten die übrigen Punkte. Ich habe dort wirklich keine Ideen. Die Extremalbedingung würde a=1/2ab lauten aber wie wären denn die Nebenbedingungen?
Die Funktion (f) lautet: f(x)=e^-1/2x *(x²-4)
Vielen Dank schon mal für die Hilfe.
|
|
|
|
Hallo crashday!
Zunächst einmal hilft (fast) immer eine entsprechende Skizze.
Daraus sollte sich dann ergeben als Hauptbedingung:
[mm] $A_{\text{Dreieck}} [/mm] \ = \ [mm] \bruch{1}{2}*a*b$
[/mm]
Dabei gilt:
$a \ = \ x-(-2)$
$b \ = \ f(x)$
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:41 Do 16.09.2010 | Autor: | Crashday |
Vielen Dank Roadrunner. Ich habe versucht, das alles zusammen zufassen und ich wollte mich erst vergewissern, ob ich es richtig gemacht habe. Ich hab diesmal ein Bild gemacht:
-
Ich möchte nur wissen, ob ich es richtig zusammengefasst habe. Ich möchte keine weiteren Rechenschritte haben. Das möchte ich gerne selber versuchen :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:46 Do 16.09.2010 | Autor: | fencheltee |
> Vielen Dank Roadrunner. Ich habe versucht, das alles
> zusammen zufassen und ich wollte mich erst vergewissern, ob
> ich es richtig gemacht habe. Ich hab diesmal ein Bild
> gemacht:
> http://img684.imageshack.us/img684/4163/unbenanntsny.png
> Ich möchte nur wissen, ob ich es richtig zusammengefasst
> habe. Ich möchte keine weiteren Rechenschritte haben. Das
> möchte ich gerne selber versuchen :)
>
>
ziemlich gruselige rechnung.. keine klammern, mal taucht ein h auf, mal isset wieder weg.. also ich finde da keinen durchblick
gruß tee
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:51 Do 16.09.2010 | Autor: | Roadrunner |
Hallo crashday!
Bitte tippe Deine Rechnung hier direkt ein, damit man auch eventuelle Korrekturen und Verbesserungen vornehmen kann.
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:56 Do 16.09.2010 | Autor: | Crashday |
Okay, tut mir leid :D
0,5x-(-2)*(e (hoch) -1/2x (x²-4))
0,5x+2*(e (hoch) -1/2x (x²-4)) *0,5x
2* (e (hoch) -1/2x (0,5x³-2x)) *2
e (hoch) -1/2x (x³-4x)
Ich glaube aber eher, ich hab da 100% irgendwas falsch gerechnet... Irgendein komisches Gefühl hab ich da....
|
|
|
|
|
Hallo crashday!
Du setzt viel zu wenig Klammern, so dass automatisch Fehler entstehen.
Außerdem kannst Du hier doch nicht einfach den Funktionsterm mit [mm]0{,}5*x_[/mm] bzw. mit [mm]2_[/mm] multiplizieren: damit veränderst Du doch den Term!
[mm]A(x) \ = \ \bruch{1}{2}*\left[x-(-2)\right]*f(x)[/mm]
[mm]= \ \bruch{1}{2}*(x+2)*e^{-\bruch{1}{2}*x}*\left(x^2-4\right)[/mm]
[mm]= \ \bruch{1}{2}*e^{-\bruch{1}{2}*x}*\underbrace{(x+2)*\left(x^2-4\right)}[/mm]
Nun fasse die letzten beiden Klammern zusammen ...
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:16 Do 16.09.2010 | Autor: | Crashday |
So dann habe ich raus:
1/2*e (hoch) -1/2x (x³+2x²-4x-8) und dann wollte ich die 0.5 vor dem e wegbekommen, dann darf ich doch die funktion, die in den klammern ist, mit 0,5 mal nehmen oder? Dann sieht die so aus:
e (hoch) -1/2x (0.5x³+x²-2x-4)
Ich hoffe, jetzt ist alles richtig.
|
|
|
|
|
> So dann habe ich raus:
>
> 1/2*e (hoch) -1/2x (x³+2x²-4x-8) und dann wollte ich die
> 0.5 vor dem e wegbekommen, dann darf ich doch die funktion,
> die in den klammern ist, mit 0,5 mal nehmen oder? Dann
> sieht die so aus:
>
> e (hoch) -1/2x (0.5x³+x²-2x-4)
schon ja, aber ich finds schöner in faktorisierter form:
[mm] e^{-0,5x}*0,5(x-2)*(x+2)^2
[/mm]
aber da du das noch ableiten musst, ist deine version wahrscheinlich etwas angenehmer
>
> Ich hoffe, jetzt ist alles richtig.
gruß tee
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:49 Do 16.09.2010 | Autor: | Crashday |
So, ich hab nun die Extrema ausgerechnet und bin auf diese Ergebnisse gekommen:
Rel. HP (-2/0)
Rel. TP (0/-4)
Rel. HP (6/6,43)
Und nun stehe ich wieder vor einem Rätsel. Der Rel. HP sieht identische wie bei dem Punkt A(-2/0) aus. Aber was ist mit den anderen? Ich hab nun Ergebnisse aber ich weiß nicht, was ich mit denen anfangen soll...
Edit: Ich hab mal bisschen nachgedacht und ich hab so eine Vorahnung. Man geht vom Ursprung aus dann wäre ja der Punkt A (-2/0). Der Punkt C also C(x/F(x) wäre (0/-4) und der Punkt B wäre (0/0) (ich bin ja vom Ursprung gegangen). Und (6/6,37) wäre ja nicht mehr im Definitionsbereich zum Dreiekc, da es sonst durch den Graphen gehen würde. Und mit den Punkten könnte ich die Strecke berechnen und dann den Flächeninhalt. Sind die Überlegungen vielleicht korrekt?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:18 Fr 17.09.2010 | Autor: | chrisno |
Hallo,
ich würde ja gerne mitdenken, nur fehlt mir die Aufgabe.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:44 Fr 17.09.2010 | Autor: | Steffi21 |
Hallo, nach den Rechnungen und der "alten Version" [mm] f(x)=e^{-0,5x}*(x^2-4) [/mm] und die Punkte A(-2;0), B(x;0), C(x;f(x)), das Dreieck ABC hat maximale Fläche
[Dateianhang nicht öffentlich]
Steffi
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Hallo, die Ableitung lautet:
[mm] f'(x)=e^{-0,5x}*(-\bruch{1}{8}*x^{3}+\bruch{1}{2}*x^{2}+\bruch{3}{2}*x)
[/mm]
die ist jetzt gleich Null zu setzen
1. Fall: [mm] e^{-0,5x}=0
[/mm]
2. Fall: [mm] -\bruch{1}{8}*x^{3}+\bruch{1}{2}*x^{2}+\bruch{3}{2}*x=0
[/mm]
du hast aus dem 2. Fall korrekt berechnet [mm] x_1=-2, x_2=0, x_3=6
[/mm]
du hattest ja a=x+2, somit gilt für
[mm] x_1=2 [/mm] hast du a=4 also B(2;0)
[mm] x_2=0 [/mm] hast du a=2 also B(0;0)
[mm] x_3=6 [/mm] hast du a=8 also b(6;0)
es ist also nur der Fall B(0;0) möglich, hast du korrekt erkannt, dein Dreieck hat also die Punkte A(-2;0), B(0;0) und C(0;-4),
Glückwunsch, alles korrekt, jetzt fehlt dir nur noch die Fläche vom Dreieck mit 4FE
Steffi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:13 Fr 17.09.2010 | Autor: | Roadrunner |
Hallo Crashday!
Was soll das? Warum hast Du die Aufgabenstellung gelöscht? So ist dieser Thread nun für andere nicht mehr verständlich.
Dann andere lesen auch gerne mit, nutzen die hier geschriebenen Aufgaben als Übung ... so ist das nun nicht mehr (oder nur mit Aufwand) möglich.
Das zeigt auf eine gewisse Art auch eine Form von Egoismus Deinerseits.
Gruß vom
Roadrunner
|
|
|
|