www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Gauß Verteilung
Gauß Verteilung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß Verteilung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:19 So 08.01.2012
Autor: ella87

Aufgabe
Ein fairer Würfel wird 600 mal geworfen.
Berechnen Sie Wahrscheinlichkeiten für folgende Ereignisse approximativ:

(a) Es wird genau 100 mal die 6 geworfen.
...

Hi!

Ich bin mir nicht ganz sicher, ob ich das richtig gemacht habe...

also, ich habe mir folgendes gedacht:
ich kann die Wahrscheinlichkeiten für das Eintreten von 0,...,600 6en in einem Histogramm darstellen (weil binomialverteilt) und muss dann nur die "Fläche des 100 6en Balken" berechnen und habe dann die gesuchte Wahrscheinlichkein P(X=100), wobei X die ZV "Es wird eine 6 geworfen" ist.

Rechnung:
[mm]E(X)=600*1/6=100=\mu[/mm]
[mm]Var(X)=600*1/6*5/6=250/3=\sigma^2[/mm]

nach Standardisierung von X erhalte ich:
[mm]a_{99}=\bruch{-1}{\wurzel{\bruch{250}{3}}[/mm]
[mm]a_{100}=0[/mm]
[mm]a_{101}=\bruch{1}{\wurzel{\bruch{250}{3}}[/mm]

und die "Grenzen" des Balken [mm]a_k[/mm]
[mm]\alpha_{100}=\bruch{-1}{2\wurzel{\bruch{250}{3}}[/mm]
[mm]\alpha_{101}=\bruch{1}{2\wurzel{\bruch{250}{3}}[/mm]

also hat der Balken die Breite [mm]\bruch{1}{\wurzel{\bruch{250}{3}}[/mm]

für die Höhe [mm]h_k[/mm] gilt:
[mm]h_k=\sigma*b_{n,p}(k)=\psi_{n,p}(a_k)\approx \phi(a_k)[/mm]
wobei [mm]\phi(t)=\bruch{1}{\wurzel{2\pi}}e^{\bruch{t^2}{2}[/mm] die Gaußsche Glockenfunktion ist.

[mm]\phi(a_{100})= \phi(0)=\bruch{1}{\wurzel{2\pi}}=h_{100}[/mm]

die Fläche des Balkes ist dann Höhe*Breite, also
[mm]P(X=100)=\bruch{1}{\wurzel{2\pi}}*\bruch{1}{\wurzel{\bruch{250}{3}}}\approx 0,0174[/mm]


korrekt?


        
Bezug
Gauß Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 So 08.01.2012
Autor: luis52

Moin,

kann leider deine Rechnung nicht nachvollziehen, aber schau []hier, Obtaining a Probability Approximation for an Individual Value. Danach erhalte ich fuer die Approximation $0.04368_$, der exakte Wert ist $0.04366_$.

vg Luis



Bezug
                
Bezug
Gauß Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 08.01.2012
Autor: ella87


> Moin,
>  
> kann leider deine Rechnung nicht nachvollziehen, aber schau
> []hier,
> Obtaining a Probability Approximation for an Individual
> Value. Danach erhalte ich fuer die Approximation [mm]0.04368_[/mm],
> der exakte Wert ist [mm]0.04366_[/mm].
>  
> vg Luis

okay, wenn ich das richtig verstehe, dann berechne ich zwei z, die ich dann in der Tabelle nachschaue und die Wahrscheinlichkeit ist die Differenz dieser beiden Wahrscheinlichkeiten.

die Formel für die z ist doch auf dem Link [mm]z_1 =\bruch{k+0,5-\mu}{\sigma}[/mm] und [mm]z_2 =\bruch{k+0,5-\mu}{\sigma}[/mm]

in meiner Aufgabe ist aber [mm]k=\mu[/mm] und damit [mm]z_1=-z_2[/mm] also sind beider Werte aus der Tabelle glich und die Wahrscheinlichkeit damit gleich 0, dass ich bei 600 Würfen genau 100 mal die 6 würfel.
das kann aber doch nicht sein,oder???


Bezug
                        
Bezug
Gauß Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 08.01.2012
Autor: Walde

Hi,

nee, es muß einmal +0,5 und einmal -0.5 heissen.

LG walde

Bezug
                        
Bezug
Gauß Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 So 08.01.2012
Autor: ella87

Tippfehler, aber die Konsequenz ist doch die selbe!

Bezug
                                
Bezug
Gauß Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 08.01.2012
Autor: Walde

Nein, durch die Symmetrie der Dichte (der Standardnormalverteilung) gilt für ihre Verteilungsfunktion [mm] \Phi(-z)=1-\Phi(z). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]