www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Geraden bestimmen
Geraden bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Sa 24.03.2007
Autor: belf

Aufgabe
Gegeben sind die Punkte A(2;2), B(-2;3) und C(4;2). Bestimmen Sie die Gleichung der Parallelen zu AB, welche durch C verläuft.

Hallo !

Ich habe diese Aufgabe jetzt gelöst aber meine Lösung stimmt nicht mit der Lösung im Buch überein.

Erste Gerade finden

3= -2m + q
2=  2m + q

also q = 2,5 und m = -0,25

meine Lösung g1 : y= -0,25 x + 2,5
Lösung im Buch g1 : [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{2 \\ 2} [/mm] + k [mm] \vektor{6 \\ -1} [/mm] ......oder y = (-x/6)+(14/6)


Zweite Gerade finden

g2 : y= -0,25x + q

C(4;2) => 2 = -1 + q

q=3

meine Lösung g2: y= -0,25x + 3 .... oder [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{4 \\ 2} [/mm] + k [mm] \vektor{4 \\ -1} [/mm]  
Lösung im Buch g2: [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{4 \\ 2} [/mm] + k [mm] \vektor{6 \\ -1} [/mm] .... oder y = -(x/6) + (16/6)

Wer hat Recht ? Und wenn ich falsch bin, wo liegt mein Fehler ?

Danke !


        
Bezug
Geraden bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Sa 24.03.2007
Autor: Kroni


> Gegeben sind die Punkte A(2;2), B(-2;3) und C(4;2).
> Bestimmen Sie die Gleichung der Parallelen zu AB, welche
> durch C verläuft.
>  Hallo !
>  
> Ich habe diese Aufgabe jetzt gelöst aber meine Lösung
> stimmt nicht mit der Lösung im Buch überein.
>
> Erste Gerade finden
>  
> 3= -2m + q
>  2=  2m + q
>  
> also q = 2,5 und m = -0,25
>  
> meine Lösung g1 : y= -0,25 x + 2,5
>  Lösung im Buch g1 : [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{2 \\ 2}[/mm] + k

Hi, hier hat das Buch offensichtlich den Richtungsvektor BC berechnet...
Richtig wäre der Vektor [mm] \vektor{4 \\ -1} [/mm]
und seine Vielfache

> [mm]\vektor{6 \\ -1}[/mm] ......oder y = (-x/6)+(14/6)
>  
>
> Zweite Gerade finden
>  
> g2 : y= -0,25x + q
>  
> C(4;2) => 2 = -1 + q
>  
> q=3
>  
> meine Lösung g2: y= -0,25x + 3 .... oder [mm]\vektor{x \\ y}[/mm] =
> [mm]\vektor{4 \\ 2}[/mm] + k [mm]\vektor{4 \\ -1}[/mm]

Hier stimme ich deiner Lösung zu.

>  Lösung im Buch g2: [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{4 \\ 2}[/mm] + k
> [mm]\vektor{6 \\ -1}[/mm] .... oder y = -(x/6) + (16/6)
>  
> Wer hat Recht ? Und wenn ich falsch bin, wo liegt mein
> Fehler ?
>  
> Danke !

Bitte

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]