Gleichung lösen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:10 Sa 25.03.2006 | Autor: | janty |
Aufgabe | Berechnen Sie die Lösung der Gleichung.
- [mm] \bruch{1}{30} x^{5} [/mm] + [mm] \bruch{1}{2} x^{3} [/mm] = 0 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich komme einfach nicht auf die Lösung der obigen Gleichung und finde einfach den Fehler nicht! Mein Vorgehen war:
1. Ich brachte die Gleichung auf die folgende Form:
- [mm] \bruch{x^{5}}{30} [/mm] + [mm] \bruch{x^{3}}{2} [/mm] = 0
2. Dann habe ich den zweiten Bruch mit 15 erweitert und alles auf einen Bruchstrich geschrieben:
[mm] \bruch{-x^{5} + 15x^{3}}{30} [/mm] = 0
3. Nun habe ich alles mal 30 genommen, und erhielt folgendes Resultat:
- [mm] x^{5} [/mm] + [mm] 15x^{3} [/mm] = 0
So, da dies eine Gleichung 5. Grades ist (?), wollte ich eine Lösung durch Probieren finden und diese dann mittels Polynomdivision aus dem Ausdruck "herausteilen". Problem ist aber, dass ich durch Probieren auf keine Lösung komme!
Jetzt weiß ich nicht, wo der Fehler steckt: Habe ich falsch umgeformt? Habe ich beim "Probieren" etwas falschgemacht?
(Anmerkung: Die Lösungsmenge ist - [mm] \wurzel{15} [/mm] , 0 und [mm] \wurzel{15}, [/mm] ich weiß aber beim besten Willen nicht, wie ich da draufkommen soll...)
Wäre nett wenn sich das mal jemand anschauen könnte. Danke!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:15 Sa 25.03.2006 | Autor: | Loddar |
Hallo janty!
Ganz kurzer Tipp : Klammere den Term [mm] $-x^3$ [/mm] aus.
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:27 Sa 25.03.2006 | Autor: | janty |
Hey Loddar,
vielen Dank, jetzt ist alles klar!
Blöd, dass ich da nicht drauf gekommen bin, hätte mir ne Menge Arbeit erspart *handaufstirnschlag*!
Vielen Dank für deine Antwort
Doch noch eine kleine Frage: Bei welcher Form von Gleichungen muss ich das vorher erwähnte Vorgehen (Probieren, Polynomdivision...) zwingend anwenden? Nur wenn der Term die Form [mm] ax^{n+2} [/mm] + [mm] bx^{n+1} [/mm] + [mm] cx^{n} [/mm] +d = 0 hat? Also wegen dem "+d" ? Bzw. bei welchen Gleichungen weiß ich sofort, dass ich Ausklammern muss?
LG
Laura
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:53 Sa 25.03.2006 | Autor: | Doro |
Hey Janty,
ja, genau das d ist schuld. Ausklammern macht bei Gleichungen mit =0 immer dann Sinn, wenn du einen Term mit x ausklammern kannst, da du dadurch ein Produkt erhälst. (und einer der Faktoren = 0 sein muss)
Ich hoffe ich konnte dir helfen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:59 Sa 25.03.2006 | Autor: | janty |
Hallo Doro,
ja, du hast mir mit deiner Antwort sehr geholfen, danke!
Jetzt weiß ich das für die Zukunft
LG
Laura
|
|
|
|