www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Gleichungssystem-Skalarprodukt
Gleichungssystem-Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem-Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 29.04.2012
Autor: Unknown-Person

Aufgabe
Das System $ [mm] \{cosnx, sinnx\}_{n=0,1,...} [/mm] $ ist orthogonal bezüglich des Skalarproduktes:

$ [mm] (f,g):=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x)*\overline{g(x)} dx} [/mm] $

Ich habe leider durch eine Suchmaschine nichts weiter dazu gefunden und wüsste gerne, wie folgendes genau gemeint ist:

In das Skalarprodukt (f,g) setze ich ja cos(nx), bzw. sin(nx) ein. Darf ich jedoch für f nur den Cosinus und für g nur den Sinus einsetzen (weil f und Cosinus jeweils auf der linken Seite stehen und für g analog), sprich: (cos[nx],sin[kx]) und dann darauf die Orthogonalität prüfen für n=k und $ [mm] n\not= [/mm] k $ ? Oder muss ich die Orthogonalität auch so prüfen, sprich jede Kombination:

(sin[nx],sin[kx])
(cos[nx],cos[kx]) ?

Es geht mir dabei darum, wie ich so ein System grundsätzlich auffasse.

Vielen Danl für Hilfe

        
Bezug
Gleichungssystem-Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 29.04.2012
Autor: Marcel

Hallo,

> Das System [mm]\{cosnx, sinnx\}_{n=0,1,...}[/mm] ist orthogonal
> bezüglich des Skalarproduktes:
>  
> [mm](f,g):=\bruch{1}{\pi}*\integral_{-\pi}^{\pi}{f(x)*\overline{g(x)} dx}[/mm]
>  
> Ich habe leider durch eine Suchmaschine nichts weiter dazu
> gefunden und wüsste gerne, wie folgendes genau gemeint
> ist:
>  
> In das Skalarprodukt (f,g) setze ich ja cos(nx), bzw.
> sin(nx) ein. Darf ich jedoch für f nur den Cosinus und
> für g nur den Sinus einsetzen (weil f und Cosinus jeweils
> auf der linken Seite stehen und für g analog), sprich:
> (cos[nx],sin[kx]) und dann darauf die Orthogonalität
> prüfen für n=k und [mm]n\not= k[/mm] ? Oder muss ich die
> Orthogonalität auch so prüfen, sprich jede Kombination:
>  
> (sin[nx],sin[kx])
>  (cos[nx],cos[kx]) ?
>  
> Es geht mir dabei darum, wie ich so ein System
> grundsätzlich auffasse.

naja, das ist doch eigentlich klar:
[mm] $$\{\cos nx, \sin nx\}_{n=0,1,...}$$ [/mm]
(was ich persönlich lieber als Familie schreiben würde - aber egal) ist nichts anderes als
[mm] $$\{\cos x, \sin x, \cos 2x, \sin 2x,\cos 3x,\sin 3x,\ldots\}\,.$$ [/mm]
Also die Familie
[mm] $$(a_n,b_n)_{n=0,\ldots}$$ [/mm]
ist
[mm] $$(a_0,b_0,a_1,b_1,a_2,b_2,\ldots)\,.$$ [/mm]

Und dann heißt die Orhogonalität, wenn [mm] $c_k,c_\ell$ [/mm] aus dieser Familie sind (und gehen wir davon aus, dass [mm] $c_k \not=c_\ell$ [/mm] für alle $k [mm] \not=\ell$), [/mm] dass [mm] $=0$ [/mm] für $k [mm] \not=\ell\,.$ [/mm]

Also:
Bei Dir wäre neben
[mm] $$<\cos [/mm] nx, [mm] \cos [/mm] mx>=0$$
für natürliche $n [mm] \not=m$ [/mm] (inklusive Null) (beachte, dass für natürliche $n [mm] \not=m$ [/mm] (für eine der Zahlen [mm] $n\,$ [/mm] oder [mm] $m\,$ [/mm] ist auch Null erlaubt!) auch [mm] $\cos (n\cdot) \not=\cos [/mm] (m [mm] \cdot)$ [/mm] sein muss - warum?) auch nachzurechnen, dass
[mm] $$<\sin [/mm] nx, [mm] \cos [/mm] mx>=0$$
für alle $n,m $ gilt (auch hier sollte man begründen, warum [mm] $\sin nx=\cos [/mm] mx$ nicht für alle $x [mm] \in \IR$ [/mm] gelten kann),
UND ZUDEM, DASS
[mm] $$<\sin [/mm] nx, [mm] \sin mx>=0\,$$ [/mm]
für alle $n [mm] \not=m$ [/mm] gilt.

P.S.
Der Deutlichkeit wegen habe ich das Skalarprodukt zwischen [mm] $f\,$ [/mm] und [mm] $g\,$ [/mm] so geschrieben: [mm] $\,.$ [/mm]

P.P.S.
Sauberer wäre übrigens solch' eine Notation (beispielhaft)
[mm] $$<\sin [/mm] (n [mm] \cdot),\sin(m \cdot)>=0$$ [/mm]
für alle natürlichen $n [mm] \not=m\,.$ [/mm]

Ergänzung:
Auch []hier (Klick!) kannst Du selbst ein wenig (mehr) dazu nachlesen!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]