Graph oder Komplement zyklisch < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | G = (E, K, ϕ) sei ein Graph mit mindestens fünf Knoten. Zeigen Sie, dass G oder der zu G komplementäre Graph G = (E', K', ϕ') mit E' = E, k∈K' ⇔ k∉K und ϕ' : K' → E×E einen Kreis enthält. |
Mein Ansatz hier ist Folgender:
Sei $G$ mit $E = [mm] \{e_1, ... , e_n\}$,$n \ge [/mm] 5$ zusammenhängend und kreisfrei. Somit existiert ein maximaler Weg zwischen $x,y [mm] \in [/mm] E$ mit Kanten [mm] $(v_1, [/mm] ... [mm] ,v_{n-1})$.
[/mm]
Auch in [mm] $\bar{G}$ [/mm] existiert ein Weg zwischen $x$ und $y$ mit Kanten [mm] $(w_1, [/mm] ... [mm] ,w_m)$, $w_1, [/mm] ... , [mm] w_m \notin [/mm] K$. Weiterhin existiert eine Kante [mm] $w_0 [/mm] = (x,y)$, wodurch sich o.g. Weg zu einem Kreis erweitern lässt.
Kann man bei dieser Aufgabe so begründen? Ich habe allerdings noch keinen Ansatz für den 2. Fall (G kreisfrei und nicht zusammenhängend). Könnt ihr mir (mal wieder ^^) helfen?
LG
~W
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:20 Mi 27.05.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Aufgabe | Sei $G = [mm] (E,K,\phi)$ [/mm] ein Graph mit der Eigenschaft, dass alle Knoten den Knotengrad mindestens 2 haben. Zeigen Sie, dass G einen Kreis enthält. |
Ich habe die Aufgabe noch einmal durchdacht und glaube, dass ich sie mithilfe des vorigen Aufgabenteils (s. oben) und einigen Modifikationen an meiner obigen Antwort vollständig lösen kann.
Zunächst meine Lösung zum ersten Aufgabenteil:
(a) Angenommen $G$ mit $E = [mm] \{e_1 , \cdots , e_n \}$ [/mm] sei kreisfrei und der Knotengrad [mm] $g(e_i) \ge [/mm] 2$ in jedem Knoten.
[mm] \Rightarrow [/mm] $G$ ist ein Baum [mm] \Rightarrow [/mm] $G$ hat maximal $n-1$ Kanten
Ein derartiger Graph müsste aber $ [mm] \summe_{i=1}^{n} g(e_i) \ge [/mm] 2 * n [mm] \ge [/mm] n-1$ Kanten haben, da jeder Knoten mind. 2 Kanten besitzt, die zu bisher unverbundenen Knoten führen.
[mm] \Rightarrow [/mm] Widerspruch
(b) Sei $G$ ein schlichter, kreisfreier Graph mit $n [mm] \ge [/mm] 5$ Knoten $E = [mm] \{e_1, \cdots , e_n\} [/mm] $.
[mm] \Rightarrow [/mm] $G$ ist maximal ein aufspannender Baum des vollständigen Graphen $V = (E, [mm] K_V, \phi_V)$.
[/mm]
[mm] \Rightarrow [/mm] $G$ hat maximal $n-1$ Kanten [mm] $k_1, \cdots [/mm] , [mm] k_{n-1}$ [/mm] und jeder Knoten den Grad [mm] $g(e_i) \le [/mm] 2$.
[mm] \Rightarrow [/mm] Im komplementären Graph [mm] $\bar [/mm] {G}$ hat jeder Knoten den Grad [mm] $\bar g(e_i) \ge n-1-g(e_i) \ge [/mm] 2$.
[mm] \Rightarrow^{(a)} [/mm] $G$ enthält einen Kreis.
Erneut die Frage, kann man so argumentieren? Nach neuerlicher Überlegung bin ich mir mit meinem "Beweis" zu Aufgabenteil (a) überhaupt nicht mehr sicher.
Ich bitte um Hilfe.
LG ~W
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Mi 27.05.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|