www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 06.11.2006
Autor: SusiSunny

Aufgabe
Zeigen Sie mit der Definition des Grenzwertes [mm] (\epsilon [/mm] -N-Technik):
a) [mm] \limes_{n \to \infty}\bruch{n^3+5*n}{3*n^3-6} [/mm] = [mm] \bruch{1}{3}; [/mm]

b) [mm] limes_{n \to \infty}((-1)^n*(n^2/(2^n)) [/mm] = 0.

Ich habe diese Terme in die Definition des Grenzwertes eingesetzt, komme aber leider mit dem Umformen nicht mehr weiter. Erstens weiß ich nicht, was ich für das Epsilon einsetzen muss, und wie ich dann auf das n komme??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert: Status verlängert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 Di 07.11.2006
Autor: SusiSunny

Also ich würde mich trotz der überschrittenen Fälligkeit freuen, wenn ich eine Antwort auf meine Frage finden würde, denn nach einigen erfolglosen Lösungsansätzen, muss ich sonst aufgeben!!
Also würde mich über einen Lösungsversuch freuen.
MfG Susi

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Di 07.11.2006
Autor: max3000

Aufgabe 1:

Stelle erst einmal die Gleichung |an-a|<e auf und stelle das was im Betrag steht um nach:

[mm] \bruch{5+2/n}{2n^{2}+n^{2}-6/n}
Jetzt ist es ratsam ein N zu wählen. Da neghmen wir mal 2 und jetzt musst du für n>2 ein e aufstellen.

Aus unserem umgestellten Bruch ergibt sich [mm] \bruch{6}{2n^{2}}<=e. [/mm]
Daraus folgt wiederrum, dass [mm] N>=\wurzel{3/e} [/mm] ist.

Das Ergebnis lautet nun [mm] \forall [/mm] e>0 [mm] \exists [/mm] N >= [mm] max(2,\wurzel{3/e}): \bruch{5n+2}{3n^{3}-6}
Wie es scheint studierst du im 1. Semester an der TU-Dresden. Ich nämlich auch und stehe genau vor den selben Problemen. Halt einfach mal morgen vor der LAAG-Vorlesung nach einem Typen mit grüner Jacke und Kippe im Mund ausschau. Das bin ich. Da können wir den Rest auch mal vergleichen.



Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Di 07.11.2006
Autor: Teufel

Hallo!

Ist das hier diese [mm] \varepsilon-N-Technik? [/mm]

[mm] |a_n-g|<\varepsilon [/mm]



Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Di 07.11.2006
Autor: SusiSunny

Ja genau! Hab das dann eingesetzt und komme beim Umformen nicht mehr weiter!!

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Di 07.11.2006
Autor: mathe-trottel

hey,

also die a ist wirklich einfach.

also:
[mm] \limes_{n \to \infty}\bruch{n^3+5\cdot{}n}{3\cdot{}n^3-6} [/mm]
das teilst du nun durch [mm] n^3. [/mm]

das solltest du einfach schaffen. dann ziehst du das lim was du noch vor dem bruch stehe hast vor alle nullfolgen und dann siehst dus chon das der grenzwert nur 1/3 sein kann.viel erfolg


Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Di 07.11.2006
Autor: SusiSunny

Ja das hätte ich auch so gemacht. Aber wir sollen die e-N-Technik dabei anwenden, also |an-a|<e. Deshalb kann man es so bestimmt nicht beweisen!! Hast du vielleicht eine Idee wie ich es damit beweisen kann??

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Di 07.11.2006
Autor: Teufel

Ok, also:

[mm] |a_n-g|<\varepsilon [/mm]

[mm] |\bruch{n³+5n}{3n³-6}-\bruch{1}{3}|<\varepsilon [/mm]

[mm] |\bruch{n³+5n}{3n³-6}-\bruch{n³-2}{3n³-6}|<\varepsilon [/mm]

[mm] |\bruch{n³+5n-n³+2}{3n³-6}|<\varepsilon [/mm]

[mm] |\bruch{5n+2}{3n³-6}|<\varepsilon [/mm]

Nunja, für n=1 ist der Ausdruck in den betragsstrichen negativ,a ber das kann man eigentlich ignorieren, da n ga gegen unendlich laufe soll. Ab n>1 wird der Bruch also immer postitiv, also kann man die Betragsstriche auch ignorieren.

[mm] \bruch{5n+2}{3n³-6}<\varepsilon [/mm]

Hm... nun weiß ich auch nicht so recht weiter. Das ist sicher auch die Stelle, an der du hängst.

Ich würde halt so argumentieren: Egal wie klein man das [mm] \varepsilon [/mm] wählt, es gibt immer unendliche viele ns, bei dem der Bruch kleiner wird, weil der Nenner im Bruch schneller steigt als der Zähler. Das heißt, dass der Bruch eine Nullfolge ist... Könnt man nun mit
[mm] \limes_{n\rightarrow\infty}\bruch{5n+2}{3n³-6} [/mm] beweisen. Aber das sollt ihr sicher nicht so machen...


Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Di 07.11.2006
Autor: SusiSunny

Ich war genau bis zu dem Punkt, an dem du warst. Ich bezweifle aber, dass ich das so argumentieren kann!
MfG

Bezug
                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Mi 08.11.2006
Autor: Sleepy

Hi Susi Sunny hab ein ähnliches Problem mit der Aufgabe...hat sie der gute Prof Voigt wieder was Schickes für uns ausgedacht.
Naja es wird schon werden
Bin genausoweit wie ihr. Vielleicht kann man sich ja mal zusammensetzen und einige Probleme erörtern.
MfG Jens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]