www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert mit Eulerscher Zahl
Grenzwert mit Eulerscher Zahl < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert mit Eulerscher Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 So 13.06.2010
Autor: Selageth

Aufgabe
g(x) = [mm]\bruch{(1-cos(2x)) * e^{(x+2)}}{2*sin^2(x) * e^{(x+3)}}[/mm]

Bestimme: [mm]\limes_{x \to 0}g(x)[/mm]

Hallo.

Die Aufgabe hier liegt schon seit 2 Tagen bei mir auf'm Tisch, ich komme aber nicht drauf wie ich das gelöst kriege. Ich vermute dass ich mittels dem Logarithmus Naturalis und Sinus/Cosinus-Umformungen weiter komme (vereinfachen).

Bisher habe ich es derart umgeformt:
[mm]\bruch{(1-2 * cos^2(x)-1)) * e^{(x+2)}}{2*sin^2(x) * e^{(x+3)}}[/mm]

        
Bezug
Grenzwert mit Eulerscher Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 So 13.06.2010
Autor: angela.h.b.


> g(x) = [mm]\bruch{(1-cos(2x)) * e^{(x+2)}}{2*sin^2(x) * e^{(x+3)}}[/mm]
>  
> Bestimme: [mm]\limes_{x \to 0}g(x)[/mm]
>  Hallo.
>  
> Die Aufgabe hier liegt schon seit 2 Tagen bei mir auf'm
> Tisch, ich komme aber nicht drauf wie ich das gelöst
> kriege. Ich vermute dass ich mittels dem Logarithmus
> Naturalis und Sinus/Cosinus-Umformungen weiter komme
> (vereinfachen).
>  
> Bisher habe ich es derart umgeformt:
>  [mm]\bruch{(1-2 * cos^2(x)-1)) * e^{(x+2)}}{2*sin^2(x) * e^{(x+3)}}[/mm]

Hallo,

Deine Umformung stimmt nicht.

Es ist doch [mm] cos(2x)=2\cos x^2-1, [/mm]

also hat man

[mm] ...=\bruch{(1-2 * cos^2(x)\red{+}1)) * e^{(x+2)}}{2*sin^2(x) * e^{(x+3)}} [/mm]

[mm] =\bruch{(2-2 * cos^2(x)) * e^{(x+2)}}{2*sin^2(x) * e^{(x+3)}}. [/mm]

Dazu sollte Dir etwas einfallen...

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]