www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwerte bei Folgen
Grenzwerte bei Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Folgen: Begriffe erklären - Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:40 Di 11.09.2007
Autor: tobias155

Aufgabe
Erkläre die Begriffe [mm] "\varepsilon-Umgebung [U_{\varepsilon}(a)]", [/mm] "Grenzwert der Folge [mm] (a_{n})", [/mm] "konvergent" und "divergent" in eigenen Worten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Wir müssen die oben genannten Begriffe verstehen und dann auch (gut wäre mit Beispielen) erklären können. Wir haben Definitionen im Mathebuch stehen, aber ich habe immer ein großes Problem damit, das in eigenen Worten zu erklären und außerdem sind die Erklärungen im Mathebuch schwer zu verstehen.

Könntet ihr mir die obigen Begriffe so "einfach" wie es geht erklären (gerne auch mit Beispielen!!).

Ich würde das ungefähr so erklären (Ich habe es aber trotzdem noch nicht richtig verstanden und außerdem sind die folgenden Ausführungen sehr nahe denen des Mathebuchs):


[mm] \varepsilon-Umgebung: [/mm]
Bei einer [mm] \varepsilon-umgebung [/mm] ist [mm] U_{\varepsilon}(a) [/mm] die Umgebung der Zahl a. a ist der Mittelpunkt. a hat ein Intervall nach links und nach rechts. Der Wert von [mm] \varepsilon [/mm] berechnet sich aus der Entfernung vom Intervall-Ende zum a.

Grenzwert einer Folge:
Der Grenzwert einer Folge liegt in dem Bereich, in dem bei einem [mm] \varepsilon-intervall [/mm] unendlich viele Glieder liegen.

konvergent:
Folge mit Grenzwert

divergent:
Folge ohne Grenzwert

Über Antworten und Verbesserungen sowie Erklärungen und Beispiele würde ich mich SEHR freuen!!

MFG tobias




        
Bezug
Grenzwerte bei Folgen: sehr gut
Status: (Antwort) fertig Status 
Datum: 19:43 Di 11.09.2007
Autor: Loddar

Hallo Tobias!


Diesen Erläuterungen ist m.E. nichts mehr hinzuzufügen. [ok]

Vielleicht bei "konvergent / divergent" die Erklärung als vollständigen Satz formulieren.


Gruß
Loddar


Bezug
                
Bezug
Grenzwerte bei Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Di 11.09.2007
Autor: tobias155

Hey ;-)
sowas bekomme ich ja selten zu hören..
Das problem ist jetzt nur, dass ich das, was ich geschrieben habe, nicht wirklich verstehe, denn ich habe eigentlich quasi nur den text aus dem mathebuch umformuliert

=> Also kann mir jemand noch einfacher erklären?? (mit beispielen?)


Bezug
                        
Bezug
Grenzwerte bei Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Di 11.09.2007
Autor: holwo

hallo,

hmmm ok, fangen wir mit [mm] \epsilon-Umgebung [/mm] an:
Mathematisch werd ichs nicht erklären sondern versuchen es umgangssprachlich zu formulieren

Du wählst ein [mm] \epsilon>0 [/mm] also eine positive zahl, z.b. [mm] \epsilon=3 [/mm]
Die 3-Umgebung eines Punktes a sind alle zahlen zwischen (a-3,a+3).
Also wenn wir die 3-Umgebung des Punktes a=0 wollen, sind das alle Zahlen zwischen (-3,3) also -3<a<3

Da du nur positive [mm] \epsilon-s [/mm] hast, wirst du in der [mm] \epsilon-Umgebung [/mm] immer unendlich viele Zahlen haben, weil wir von reellen Zahlen reden und sie unendlich sind in jedem intervall. Das gilt, egal wie klein dein [mm] \epsilon [/mm] ist, solange er positiv ist.

Konvergenz:
Nehmen wir eine konvergente folge, z.b. [mm] \bruch{1}{n}, [/mm] mit n [mm] \in \IN [/mm] also [mm] 1,\bruch{1}{2},\bruch{1}{3},\bruch{1}{4},\bruch{1}{5},\bruch{1}{6},\bruch{1}{7} \dots [/mm]
Die konvergiert bekanntlich gegen 0.

Eine folge ist nach definition konvergent, wenn zu jedem [mm] \epsilon [/mm] wir ein [mm] n_{0} [/mm]  finden können, so dass für alle n [mm] \ge n_{0} [/mm] , sich die Folgenglieder innerhalb der [mm] \epsilon-Umgebung [/mm] befinden.

Hört sich sehr kompliziert an.. aber:
wählen wir z.b. [mm] \epsilon=6 [/mm] , [mm] \epsilon [/mm] >0 also alles ok
Wir müssen ein [mm] n_{0} [/mm] finden, sodass ab da alle folgenglieder zwischen (0-6,0+6) sind, also zwischen -6 und 6
Nagut, wenn wir [mm] n_{0}=1 [/mm] wählen, dann sind alle folgenglieder zwischen -6 und 6, also klappt. Das sind alle glieder der folge

jetzt wählen wir ein kleineres [mm] \epsilon, [/mm] z.b. [mm] \epsilon=\bruch{1}{3} [/mm]
Wir müssen ein [mm] n_{0} [/mm] finden, sodass ab da alle folgenmitglieder zwischen [mm] (0-\bruch{1}{3},0+\bruch{1}{3}) [/mm] sind, also zwischen [mm] -\bruch{1}{3} [/mm] und [mm] \bruch{1}{3} [/mm]
Wenn wir [mm] n_{0}=4 [/mm] wählen, dann sind alle folgenmitglieder für die [mm] n\ge [/mm] 4 zwischen [mm] -\bruch{1}{3} [/mm] und [mm] \bruch{1}{3} [/mm]
Das sind [mm] \bruch{1}{4},\bruch{1}{5}\dots [/mm]

ja und eine divergente folge ist eine folge, wo es kein grenzwert gibt, wie du gesagt hast :)

ich hoff das hilft dir weiter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]