www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Hochpunkt
Hochpunkt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hochpunkt: tipp
Status: (Frage) beantwortet Status 
Datum: 14:42 So 11.05.2014
Autor: Jops

Aufgabe
Samen A [mm] f(x)=y*x*e^{0,3-0,02*y*x} [/mm]
                    Y=5            Y2=9

wann hat der Samen bei y und y2 seine Maximale größe bzw. wie groß ist es?

ich würde die Ableitung bilden
[mm] f(x)=5xe^{0,3-0,02*y*x} [/mm]
[mm] f'(x)=-0.1xe^{0,3-0,02*y*x}= [/mm] 0
stimmt der ansatz?

        
Bezug
Hochpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 So 11.05.2014
Autor: abakus


> Samen A [mm]f(x)=y*x*e^{0,3-0,02*y*x}[/mm]
> Y=5 Y2=9

>

> wann hat der Samen bei y und y2 seine Maximale größe bzw.
> wie groß ist es?
> ich würde die Ableitung bilden
> [mm]f(x)=5xe^{0,3-0,02*y*x}[/mm]
> [mm]f'(x)=-0.1xe^{0,3-0,02*y*x}=[/mm] 0
> stimmt der ansatz?

Keine Ahnung.
So lange statt einer vernünftigen Aufgabenstellung nur ein paar zusammenhanglose Brocken dastehen...
Wofür steht x?
Wofür steht y?
Was wird durch f(x) ausgedrückt?

Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]