Interpolationsfehler < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] f \in \IC^{n+1}([a,b]) [/mm] und es gelte [mm] f(x_i)=y_i (i=0,1,...,n) [/mm]. Für die Lösung [mm] p \in P_n [/mm] der Lagrange-Interpolationsaufgabe und jedes [mm] x \in [a,b] [/mm] existiert dann ein [mm] \phi \in [a,b] [/mm], sodass gilt:
[mm] f(x)-p(x)= \bruch {f^{(n+1)} (\phi)}{(n+1)!} \produkt_{j=0}^{n} (x-x_j) [/mm]
Beweis: Sei [mm] x \in [a,b] [/mm]. Gilt [mm]x \in {x_0,...,x_n} [/mm], so ist die Aussage klar.
Sei [mm] x \not= x_i, (i=0,1,...,n) [/mm]. Mit dem Stützstellenpolynom
[mm] w(y)= \produkt_{j=0}^{n} (y-x_j) = y^{n+1} + a_n y^n +...+ a_0 \in P_{n+1} [/mm] für [mm] y \in [a,b] [/mm] sei
[mm] F(y) = (f(x)-p(x))w(y)-(f(y)-p(y))w(x) [/mm]. (A)
Dann gilt [mm] F(x_i)=0 (i=0,...,n) [/mm] und [mm] F(x)=0 [/mm],
das heißt F hat mindestens n+2 verschiedene Nullstellen. Nach dem Satz von Rolle hat F' zwischen zwei Nullstellen von F eine Nullstelle, das heißt F' hat mindestens n+1 verschiedene Nullstellen. Die wiederholte Anwendung dieses Arguments zeigt, dass die Ableitung [mm] F^{(n+1)} [/mm] mindestens eine Nullstelle [mm] \phi \in [a,b] [/mm] besitzt. Damit folgt
[mm] 0=F^{(n+1)} (\phi) = (f(x)-p(x))(n+1)!-f^{(n+1)} (\phi) w(x) [/mm] (B)
und dies ist die behauptete Identität. |
Hallo!
Ich habe Probleme diesen Beweis zu verstehen. Die Stellen, die mir Schwierigkeiten bereiten habe ich mit (A), (B) gekennzeichnet.
(A): Woher kommt diese Gleichung? Ich hab schon versucht die Definitionen einzusetzen, aber ich komme damit nicht weiter...
(B): Wie kommt man auf die zweite Gleichung? Ich habe irgendwie gar keinen Ansatz.
Kann mir dabei jemand helfen? Das wäre toll!
Liebe Grüße, Lily
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:13 Fr 08.07.2016 | Autor: | hippias |
> Sei [mm]f \in \IC^{n+1}([a,b])[/mm] und es gelte [mm]f(x_i)=y_i (i=0,1,...,n) [/mm].
> Für die Lösung [mm]p \in P_n[/mm] der
> Lagrange-Interpolationsaufgabe und jedes [mm]x \in [a,b][/mm]
> existiert dann ein [mm]\phi \in [a,b] [/mm], sodass gilt:
> [mm]f(x)-p(x)= \bruch {f^{(n+1)} (\phi)}{(n+1)!} \produkt_{j=0}^{n} (x-x_j)[/mm]
>
> Beweis: Sei [mm]x \in [a,b] [/mm]. Gilt [mm]x \in {x_0,...,x_n} [/mm], so ist
> die Aussage klar.
> Sei [mm]x \not= x_i, (i=0,1,...,n) [/mm]. Mit dem
> Stützstellenpolynom
> [mm]w(y)= \produkt_{j=0}^{n} (y-x_j) = y^{n+1} + a_n y^n +...+ a_0 \in P_{n+1}[/mm]
> für [mm]y \in [a,b][/mm] sei
> [mm]F(y) = (f(x)-p(x))w(y)-(f(y)-p(y))w(x) [/mm]. (A)
>
> Dann gilt [mm]F(x_i)=0 (i=0,...,n)[/mm] und [mm]F(x)=0 [/mm],
> das heißt F hat mindestens n+2 verschiedene Nullstellen.
> Nach dem Satz von Rolle hat F' zwischen zwei Nullstellen
> von F eine Nullstelle, das heißt F' hat mindestens n+1
> verschiedene Nullstellen. Die wiederholte Anwendung dieses
> Arguments zeigt, dass die Ableitung [mm]F^{(n+1)}[/mm] mindestens
> eine Nullstelle [mm]\phi \in [a,b][/mm] besitzt. Damit folgt
> [mm]0=F^{(n+1)} (\phi) = (f(x)-p(x))(n+1)!-f^{(n+1)} (\phi) w(x)[/mm]
> (B)
>
> und dies ist die behauptete Identität.
> Hallo!
>
> Ich habe Probleme diesen Beweis zu verstehen. Die Stellen,
> die mir Schwierigkeiten bereiten habe ich mit (A), (B)
> gekennzeichnet.
>
> (A): Woher kommt diese Gleichung? Ich hab schon versucht
> die Definitionen einzusetzen, aber ich komme damit nicht
> weiter...
Das ist nicht die richtige Frage: es wird bei $(A)$ lediglich die Funktion $F$ definiert. Das muss man so hinnehmen. Weshalb diese Funktion nützlich ist, hat seine Ursache in der Klugheit des Autors und wird durch den weiteren Text im Beweis gerechtfertigt.
>
> (B): Wie kommt man auf die zweite Gleichung? Ich habe
> irgendwie gar keinen Ansatz.
Es wird lediglich $F$ $n+1$-mal abgeleitet und für $y$ [mm] $\phi$ [/mm] eingesetzt; beachte die Grade der auftretenden Polynome.
>
> Kann mir dabei jemand helfen? Das wäre toll!
> Liebe Grüße, Lily
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:44 So 10.07.2016 | Autor: | Mathe-Lily |
Ah, jetzt hab ichs, vielen Dank!
|
|
|
|