www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Invarianz d. Lebesgue-Integral
Invarianz d. Lebesgue-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invarianz d. Lebesgue-Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:24 Di 24.01.2006
Autor: phrygian

Aufgabe
Zeigen Sie:
Sei [mm] M\subset\IR^n [/mm] eine k-dimensionale Mannigfaltigkeit der Klasse [mm] C^\alpha. [/mm] Die Diffeomorphismen [mm] \tau_a,\rho [/mm] bzw. [mm] \theta_r [/mm] : [mm] \IR^n \to \IR^n [/mm] (Translation, Rotation bzw. Streckung oder Stauchung) seien definiert durch:

[mm]\tau_a(x) := a+x[/mm]  [mm](a\in\IR^n)[/mm],

[mm]\rho(x) := Qx[/mm]  [mm](Q\in O(n))[/mm],

[mm]\theta_r(x) := rx[/mm]  [mm](r\in\IR_{>0})[/mm].


Dann gilt:

[mm]f\in L^1(M,\IR) \gdw f\circ\tau_a^{-1} \in L^1(\tau_a(M),\IR) \gdw f\circ\rho^{-1} \in L^1(\rho(M),\IR) \gdw f\circ\theta_r^{-1} \in L^1(\theta_r(M),\IR)[/mm].

In diesem Fall ist

[mm]\integral_{\tau_a(M)} {f\circ\tau_a^{-1}}=\integral_{M} {f}[/mm], [mm]\integral_{\rho(M)} {f\circ\rho^{-1}}=\integral_{M} {f}[/mm], [mm]\integral_{\theta_r(M)} {f\circ\theta_r^{-1}}=r^n \integral_{M} {f}[/mm].

Hallo

mir ist nicht ganz klar, was man alles beweisen muss:

nur die letzten drei Gleichungen oder auch die Äquivalenzen?

Ausserdem habe ich keine Ahnung, wie ich die Aussagen beweisen soll!

Danke für eure Hilfe!

Gruss
phrygian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Invarianz d. Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Di 24.01.2006
Autor: Julius

Hallo phrygian!

Es ist zehn Jahre her, dass ich mich zuletzt mit Mannigfaltigkeiten beschäftigt habe, daher sind meine Aussagen hier mit Vorsicht zu genießen und ich setze mal die Frage auf "teilweise beantwortet".

Zunächst musst du dir klarmachen, dass die Bilder der Mannigfaltigkeiten unter den gegebenen Diffeomorphismen wieder Mannigfaltigkeiten sind. Wie sehen die neuen Karten aus?

Dann solltest du die zu zeigenden Transformationsformeln mittels Zerlegungen der Eins und der Karten auf die gewöhnliche Transformationsformel im [mm] $\IR^k$ [/mm] bezüglich des Lebesgue-Maßes zurückführen.

So oder so ähnlich sollte es wohl gehen...

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]