www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Jordanisieren
Jordanisieren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordanisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Sa 31.05.2008
Autor: mathmetzsch

Aufgabe
Jordanisiere die folgende Matrix

[mm] A=\pmat{ -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1}. [/mm]

Tipp: [mm] P_{A}(x)=(1-x)^{4}(2-x) [/mm]

Hallo Leute, also prinzipiell ist mir klar wie das geht. Ich fang mal an:

Die Eigenwerte kenne ich, da ich das char. Polynom kenne. Die sind 1 und 2, wobei 1 vierfache Nullstelle ist.

[mm] Hau(A,2)=Eig(A,2)=ker\pmat{ -5 & -1 & 4 & -3 & -1 \\ 1 & -1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 4 & 1 & -4 & 3 & 1 \\ -2 & 0 & 2 & -2 & -1}=ker\pmat{ 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -2 & -3} [/mm]
[mm] =span\vektor{0 \\ -1 \\ -2 \\ -3 \\ 2}. [/mm]

Stimmt das soweit?

Beim Hauptraum zum Eigenwert 1 wird das komplizierter wegen der Vielfachheit der Nullstelle. Fangen wir an:

[mm] Hau(A,1)=ker((A-E_{5})^{4})=ker\pmat{ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 \\ 2 & 0 & -2 & 2 & 0 \\ 3 & 0 & -3 & 3 & 0 \\ -2 & 0 & 2 & -2 & 0}=ker(\pmat{1 & 0 & -1 & 1 & 0)}. [/mm]

Ich brauche also vier Vektoren, die diesen Raum aufspannen. Einer ist sicherlich [mm] \vektor{1 \\ 0 \\ 1 \\ 0 \\ 0}. [/mm] Aber wie finde ich die anderen? Ich habe versucht geeignete LGS aufzustellen und deren Lösungen zu benutzen. Leider kommt dann am Ende aber nicht die jordanisierte Matrix raus. Kann mir da jemand helfen? Meine Vektoren sind dann noch:
[mm] \vektor{0 \\ 1 \\ 0 \\ 0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ -1 \\ 0}, \vektor{0 \\ 0 \\ 0 \\ 0 \\ 1}. [/mm] In welcher Reihenfolge trägt man die Vektoren dann eigentlich in die Matrix ein?

Grüße
Daniel

        
Bezug
Jordanisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Sa 31.05.2008
Autor: steppenhahn


> Jordanisiere die folgende Matrix
>  
> [mm]A=\pmat{ -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1}.[/mm]
>  
> Tipp: [mm]P_{A}(x)=(1-x)^{4}(2-x)[/mm]
>  Hallo Leute, also prinzipiell ist mir klar wie das geht.
> Ich fang mal an:
>  
> Die Eigenwerte kenne ich, da ich das char. Polynom kenne.
> Die sind 1 und 2, wobei 1 vierfache Nullstelle ist.
>
> [mm]Hau(A,2)=Eig(A,2)=ker\pmat{ -5 & -1 & 4 & -3 & -1 \\ 1 & -1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 4 & 1 & -4 & 3 & 1 \\ -2 & 0 & 2 & -2 & -1}=ker\pmat{ 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -2 & -3}[/mm]
>  
> [mm]=span\vektor{0 \\ -1 \\ -2 \\ -3 \\ 2}.[/mm]
>  
> Stimmt das soweit?

Bis hierher ja, ob das weitere richtig ist, steht nicht in meiner Macht das zu beurteilen :-)


Bezug
        
Bezug
Jordanisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Sa 31.05.2008
Autor: MathePower

Hallo mathmetzsch,

> Jordanisiere die folgende Matrix
>  
> [mm]A=\pmat{ -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1}.[/mm]
>  
> Tipp: [mm]P_{A}(x)=(1-x)^{4}(2-x)[/mm]
>  Hallo Leute, also prinzipiell ist mir klar wie das geht.
> Ich fang mal an:
>  
> Die Eigenwerte kenne ich, da ich das char. Polynom kenne.
> Die sind 1 und 2, wobei 1 vierfache Nullstelle ist.
>
> [mm]Hau(A,2)=Eig(A,2)=ker\pmat{ -5 & -1 & 4 & -3 & -1 \\ 1 & -1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 4 & 1 & -4 & 3 & 1 \\ -2 & 0 & 2 & -2 & -1}=ker\pmat{ 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -2 & -3}[/mm]
>  
> [mm]=span\vektor{0 \\ -1 \\ -2 \\ -3 \\ 2}.[/mm]
>  
> Stimmt das soweit?


Ja. [ok]


>  
> Beim Hauptraum zum Eigenwert 1 wird das komplizierter wegen
> der Vielfachheit der Nullstelle. Fangen wir an:
>  
> [mm]Hau(A,1)=ker((A-E_{5})^{4})=ker\pmat{ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 \\ 2 & 0 & -2 & 2 & 0 \\ 3 & 0 & -3 & 3 & 0 \\ -2 & 0 & 2 & -2 & 0}=ker(\pmat{1 & 0 & -1 & 1 & 0)}.[/mm]
>  
> Ich brauche also vier Vektoren, die diesen Raum aufspannen.
> Einer ist sicherlich [mm]\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0}.[/mm] Aber
> wie finde ich die anderen? Ich habe versucht geeignete LGS
> aufzustellen und deren Lösungen zu benutzen. Leider kommt
> dann am Ende aber nicht die jordanisierte Matrix raus. Kann
> mir da jemand helfen? Meine Vektoren sind dann noch:
>  [mm]\vektor{0 \\ 1 \\ 0 \\ 0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ -1 \\ 0}, \vektor{0 \\ 0 \\ 0 \\ 0 \\ 1}.[/mm]


Bestimme zunächst [mm]ker\left(A-E_{5}\right)[/mm].

Die Dimension dieses Lösungsraumes gibt Dir die Anzahl der Jordanblöcke zum Eigenwert 1 an.

Nun zu der Frage der weiteren Vektoren. Hier sind dann die Gleichungssysteme

[mm]\left(A-E_{5}\right)^{k}*x_{k}=0_{5}, \ k>0, \ k \in \IN[/mm] zu lösen, bis man 4 Vektoren hat.

Praktischerweise geht man hier so vor:

[mm]\left(A-E_{5}\right)^{k}*x_{k}=\left(A-E_{5}\right)^{k-1}*\left(A-E_{5}\right)*x_{k}=0_{5}[/mm]

Definiert man [mm]x_{k-1}:=\left(A-E_{5}\right)*x_{k}[/mm] mit [mm]x_{k-1}[/mm] Lösung von

[mm]\left(A-E_{5}\right)^{k-1}*x_{k-1}=0_{5}[/mm]

[mm]x_ {k-1}[/mm] nennt man hier den Eigenvektor k-1. Stufe zum Eigenwert 1.

So ist das Gleichungssystem

[mm]\left(A-E_{5}\right)*x_{k}=x_{k-1}[/mm]

zu lösen.

Wobei hier darauf zu achten ist, daß [mm]x_{k} \not\in ker\left(A-E_{5}\right)^{l}, \ 1 \le l < k[/mm] ist.

> In welcher Reihenfolge trägt man die Vektoren dann
> eigentlich in die Matrix ein?

In der Regel so wie man sie berechnet.

Bei paarweise verschiedenen Eigenwerten (hier also 5 verschiedene EWe) ist die Reihenfolge eigentlich egal. Da trägt man die nacheinander in die Matrix ein.

Wenn es jedoch noch Eigenvektoren höherer Stufe gibt, dann muß man die auch dementsprechend eintragen.

Nehmen wir mal an, zu einem Eigenwert c gibt es zu einem Eigenvektor [mm]y_{1}[/mm] noch Eigenvektoren [mm]y_{i}, \ i>1[/mm] höherer Stufe, dann lautet der Eintrag in der Matrix:

[mm]y_{1}, \ \dots \ , \ y_{l}[/mm]

,wobei [mm]y_{i}[/mm] der Eigenvektor i. Stufe ist.

>  
> Grüß
>  Daniel

Gruß
MathePower

Bezug
                
Bezug
Jordanisieren: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Sa 31.05.2008
Autor: mathmetzsch

Hey Mathepower, danke für deine Antwort. Ich werde das mal mit den GS probieren!

Grüße Daniel

Bezug
                
Bezug
Jordanisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mo 02.06.2008
Autor: mathmetzsch

Hallo Leute,

noch mal ein Frage zu dieser AUfgabe. Ich habe jetzt gerechnet und gerechnet und bekomme einfach zum Eigenwert 1 nicht die richtigen Hauptraumvektoren. Kann das vielleicht mal jemand mit Maple oder so ausrechnen und hier reinstellen oder auch per Hand? Die Aufgabe treibt mich noch in den Wahnsinn. Hier meine LÖsung, die aber falsch ist:

[mm] \vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},\vektor{0 \\ -1 \\ 0 \\ 0 \\ 1}, [/mm]
[mm] \vektor{2 \\ -1 \\ 1 \\ -1 \\ -1}, [/mm]
[mm] \vektor{-1 \\ 2 \\ 1 \\ 0 \\ 2} [/mm]

Danke! Grüße, Daniel

Bezug
                        
Bezug
Jordanisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Di 03.06.2008
Autor: angela.h.b.


> Hallo Leute,
>  
> noch mal ein Frage zu dieser AUfgabe. Ich habe jetzt
> gerechnet und gerechnet und bekomme einfach zum Eigenwert 1
> nicht die richtigen Hauptraumvektoren. Kann das vielleicht
> mal jemand mit Maple oder so ausrechnen und hier
> reinstellen oder auch per Hand? Die Aufgabe treibt mich
> noch in den Wahnsinn. Hier meine LÖsung, die aber falsch
> ist:
>  
> [mm]\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},\vektor{0 \\ -1 \\ 0 \\ 0 \\ 1},[/mm]
>  
> [mm]\vektor{2 \\ -1 \\ 1 \\ -1 \\ -1},[/mm]
>  [mm]\vektor{-1 \\ 2 \\ 1 \\ 0 \\ 2}[/mm]
>  
> Danke! Grüße, Daniel

Hallo,

ich habe folgendes errechnet:

[mm] Kern(A-E)=<\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},\vektor{0 \\ -1 \\ 0 \\ 0 \\ 1}>, [/mm]

[mm] Kern(A-E)^2=<\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},\vektor{0 \\ -1 \\ 0 \\ 0 \\ 1}, \vektor{-1 \\ 0 \\ 0 \\ 1 \\ 0}> [/mm]

[mm] Kern(A-E)^3=<\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},\vektor{0 \\ -1 \\ 0 \\ 0 \\ 1}, \vektor{-1 \\ 0 \\ 0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 0 \\ 0 \\ 1}>. [/mm]

[mm] Kern(A-E)^4=Kern(A-E)^3 [/mm]

(Ohne Gewähr.)

Gruß v. Angela



Bezug
                                
Bezug
Jordanisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Di 03.06.2008
Autor: mathmetzsch

Hey Angela, das scheint zu funktionieren! Dankeschön!

Grüße, Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]