Komplexes Integral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechne folgendes Integral:
[mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm] für [mm] f:\IC \to \IC; [/mm] f(x) = [mm] x^2*cos(ax)*e-x^2 [/mm] |
Liebe Mathefreunde,
Mein Ansatz ist bisher der Folgende:
[mm] \integral_{-\infty}^{\infty}{x^2*cos(ax)*e-x^2 dx}=\integral_{-\infty}^{\infty}{x^2*\bruch{e^{ax}+e^{-ax}}{2}*e^{-x^2} dx}=
[/mm]
[mm] =\integral_{-\infty}^{\infty}{x^2*\bruch{e^{ax-x^2}+e^{-ax-x^2}}{2} dx}=
[/mm]
[mm] =\bruch{1}{2}\integral_{-\infty}^{\infty}{x^2*e^{ax-x^2} dx}+\integral_{-\infty}^{\infty}{x^2*e^{-ax-x^2 dx}}= \ldots
[/mm]
An dieser Stelle komme ich dann nicht mehr weiter. Ich habe es mit partieller Integration versucht, aber das funktioniert irgendwie nicht so richtig... Kann mir jemand helfen? Vielen Dank im Voraus!
Gruß
Der Duke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:37 Fr 11.05.2012 | Autor: | Denny22 |
> Berechne folgendes Integral:
> [mm]\integral_{-\infty}^{\infty}{f(x) dx}[/mm] für [mm]f:\IC \to \IC;[/mm]
> f(x) = [mm]x^2*cos(ax)*e-x^2[/mm]
> Liebe Mathefreunde,
>
> Mein Ansatz ist bisher der Folgende:
> [mm]\integral_{-\infty}^{\infty}{x^2*cos(ax)*e-x^2 dx}=\integral_{-\infty}^{\infty}{x^2*\bruch{e^{ax}+e^{-ax}}{2}*e^{-x^2} dx}=[/mm]
>
> [mm]=\integral_{-\infty}^{\infty}{x^2*\bruch{e^{ax-x^2}+e^{-ax-x^2}}{2} dx}=[/mm]
>
> [mm]=\bruch{1}{2}\integral_{-\infty}^{\infty}{x^2*e^{ax-x^2} dx}+\integral_{-\infty}^{\infty}{x^2*e^{-ax-x^2 dx}}= \ldots[/mm]
>
> An dieser Stelle komme ich dann nicht mehr weiter. Ich habe
> es mit partieller Integration versucht, aber das
> funktioniert irgendwie nicht so richtig... Kann mir jemand
> helfen? Vielen Dank im Voraus!
Du hast also
[mm] $...=\bruch{1}{2}\left(\integral_{-\infty}^{\infty}{x^2*e^{ax-x^2} dx}+\integral_{-\infty}^{\infty}{x^2*e^{-ax-x^2}dx}\right)$
[/mm]
Nun musst Du eine quadratische Ergaenzung machen
[mm] $=\bruch{1}{2}\left(e^{-\left(\frac{a}{2}\right)^2}\integral_{-\infty}^{\infty}{x^2*e^{-\left(x-\frac{a}{2}\right)^2} dx}+e^{\left(\frac{a}{2}\right)^2}\integral_{-\infty}^{\infty}{x^2*e^{-\left(x+\frac{a}{2}\right)^2 }dx}\right)$
[/mm]
Hierfuer gibt es nun entweder eine Formel (nach einer Tragsformation erhaelt man den 2. Moment der Normalverteilung) oder Du berechnest es direkt. Dazu muesstest Du nun partielle Integration machen, bis vorne das [mm] $x^2$ [/mm] verschwunden ist. Anschliessend kannst Du [mm] $y=x-\frac{a}{2}$ [/mm] im ersten und [mm] $y=x+\frac{a}{2}$ [/mm] im zweiten Integral substituieren. Am Ende solltest Du auf
[mm] $...=\sqrt{\pi}\left(\frac{1}{2}-\left(\frac{a}{2}\right)^2\right)e^{-\left(\frac{a}{2}\right)^2}$
[/mm]
kommen.
> Gruß
> Der Duke
|
|
|
|