Kompliziertes Integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:12 Mi 28.01.2015 | Autor: | Mino1337 |
Aufgabe | Integriere:
[mm] \bruch{I}{4*\pi}\integral_{r1}^{r2}{\bruch{P0+C(r-r1)}{r^{2}} dr}
[/mm]
Lösung:
[mm] \bruch{I}{4*\pi}(P0[\bruch{1}{r1}-\bruch{1}{r2}]+C*ln\bruch{r2}{r1}-r1*C[\bruch{1}{r1}-\bruch{1}{r2}]) [/mm] |
Hallo,
Obiges ist eine Übungsaufgabe für die bevorstehenden Klausuren.
Eigentlich kann ich einigermaßen Integrieren aber ich komme Einfach nicht auf die vorgegebene Lösung.
Meine Lösung würde so ausehen:
[mm] \bruch{I}{4*\pi}\integral_{r1}^{r2}{P0+C(\bruch{1}{r^{2}}*(r-r1)) dr}
[/mm]
=
[mm] \bruch{I}{4*\pi}*P0+C[\bruch{1}{r1}-\bruch{1}{r2}*(\bruch{r1^{2}}{2}-r1-\bruch{r2^{2}}{2}-r1)]
[/mm]
Anscheinend habe ich was nicht verstanden, könnte mir da bitte jemand Helfen ?
|
|
|
|
Hallo Mino!
Zwei dicke Fehler machst Du.
Zum ersten bei der Umformung des Integranden:
[mm]\bruch{I}{4*\pi}*\integral_{r_1}^{r_2}{\bruch{P_0+C*(r-r_1)}{r^{2}} \ \mathrm{dr}} \ = \ \bruch{I}{4*\pi}*\integral_{r_1}^{r_2}{\bruch{P_0}{r^2}+\bruch{C*(r-r_1)}{r^{2}} \ \mathrm{dr}} \ = \ \bruch{I}{4*\pi}*\integral_{r_1}^{r_2}{P_0*r^{-2}+C*\bruch{r-r_1}{r^{2}} \ \mathrm{dr}} \ = \ \bruch{I}{4*\pi}*\left[ \ P_0*\integral_{r_1}^{r_2}{r^{-2} \ \mathrm{dr}}+C*\integral_{r_1}^{r_2}{\bruch{r-r_1}{r^{2}} \ \mathrm{dr}} \ \right] \ = \ ...[/mm]
Dabei muss dann das letzte Teilintegral nochmals zerlegt werden.
> Meine Lösung würde so ausehen:
> [mm]\bruch{I}{4*\pi}\integral_{r1}^{r2}{P0+C(\bruch{1}{r^{2}}*(r-r1)) dr}[/mm]
> = $ [mm] \bruch{I}{4\cdot{}\pi}\cdot{}P0+C[\bruch{1}{r1}-\bruch{1}{r2}\cdot{}(\bruch{r1^{2}}{2}-r1-\bruch{r2^{2}}{2}-r1)] [/mm] $
Und hier würden auch noch entscheidende Klammern fehlen, da der Bruch [mm]\bruch{I}{4*\pi}[/mm] mit der gesamten Stammfunktion multipliziert werden muss.
Das ist aber hinfällig durch den ersten Fehler.
Gruß vom
Roadrunner
|
|
|
|