Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:12 Do 30.11.2006 | Autor: | Thomas85 |
Hallo
Habe folgende Aufgabe:
Zu der Folge [mm]a_{n}[/mm] finde man zu jedem [mm]\varepsilon[/mm] ein [mm]N(\varepsilon)[/mm], so dass für alle n >= [mm]N(\varepsilon)[/mm] die Ungleichung [mm]|a_{n}|[/mm] < [mm]\varepsilon[/mm] besteht.
[mm]
a_{n}[/mm] = [mm]\bruch{n}{n^3+n^2+2}[/mm]
zeigen dass sie monoton ist und dass die eine untere schranke hat is kein problem, aber wie schreibe ich das in bezug auf die aufgabenstellung auf?
Könnte ich einfach schreiben: Sei [mm]\varepsilon[/mm] [mm]\bruch{n-1}{(n-1)^3+(n-1)^2+2}[/mm] dann folgt aus der monotonie ([mm]a_{n-1}[/mm] > [mm]a_{n}[/mm]) dass [mm]a_{n}[/mm] < [mm]\varepsilon[/mm] gilt? oder wie?
mfg und vielen dank
thomas
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:27 Fr 01.12.2006 | Autor: | luis52 |
Hallo Thomas,
bei solchen Abschaetzungen darf man ruhig mal etwas brutal sein. Die
Ungleichung [mm] $n/(n^3+n^2+2)<\varepsilon$ [/mm] ist aeqivalent mit
[mm] $n^2+n+2/n>\varepsilon$ [/mm] (teile Zaehler und Nenner der linken Seite durch
$n$ und bilde die Kehrwerte). Nun gilt weiter
[mm] $n^2+n+2/n>n^2$. [/mm] Waehlst du mithin [mm] $N(\varepsilon)$ [/mm] groesser als
[mm] $\sqrt{\varepsilon}$, [/mm] so folgt das Gewuenschte.
hth
|
|
|
|