Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:44 Fr 25.03.2016 | Autor: | Reynir |
Hi,
wenn ich zwei Reihen habe und es gilt: [mm] $\sum_{n\geq 1}\frac{1}{n^s}$ [/mm] mit [mm] $b_n=\frac{1}{n^s}$ [/mm] und $s>1$ (dann konvergiert diese erst Reihe). Sei [mm] $\sum_{n\geq 0} a_n$ [/mm] mit [mm] $|\frac{a_{n+1}}{a_n}|\leq \frac{b_{n+1}}{b_n}$, [/mm] wieso kann man dann sagen, dass [mm] $\sum_{n\geq 1} [/mm] M [mm] b_n [/mm] $ eine Majorante ist?Ich sehe nicht, wie ich aus dem Quotienten die [mm] $a_n$ [/mm] abschätzen kann.
Viele Grüße,
Reynir
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:02 Fr 25.03.2016 | Autor: | tobit09 |
Hallo Reynir!
> wenn ich zwei Reihen habe und es gilt: [mm]\sum_{n\geq 1}\frac{1}{n^s}[/mm]
> mit [mm]b_n=\frac{1}{n^s}[/mm] und [mm]s>1[/mm] (dann konvergiert diese erst
> Reihe). Sei [mm]\sum_{n\geq 0} a_n[/mm] mit
> [mm]|\frac{a_{n+1}}{a_n}|\leq \frac{b_{n+1}}{b_n}[/mm],
... für alle [mm] $n\ge [/mm] 1$?
Also gilt insbesondere [mm] $a_n\not=0$ [/mm] für alle [mm] $n\in\IN$ [/mm] mit [mm] $n\ge [/mm] 1$?
> wieso kann
> man dann sagen, dass [mm]\sum_{n\geq 1} M b_n[/mm] eine Majorante
> ist?
Was ist M?
Vermutlich lautet die Behauptung, dass eine Zahl M EXISTIERT, so dass [mm] $\sum_{n\geq 0} [/mm] M [mm] b_n$ [/mm] eine Majorante von [mm] $\sum_{n\geq 0}a_n$ [/mm] ist (damit ist wohl gemeint, dass [mm] $|a_n|\le Mb_n$ [/mm] für alle [mm] $n\ge [/mm] 1$ gilt).
> Ich sehe nicht, wie ich aus dem Quotienten die [mm]a_n[/mm]
> abschätzen kann.
Wähle [mm] $M:=\frac{|a_1|}{b_1}$ [/mm] und zeige per vollständiger Induktion, dass tatsächlich für alle [mm] $n\ge [/mm] 1$ gilt: [mm] $|a_n|\le Mb_n$.
[/mm]
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:24 Sa 26.03.2016 | Autor: | Reynir |
Hi Tobit,
ich danke dir für deine Hilfe. Das war Teil eines Beweises meines Profs, der hatte gesagt die Ungleichung gilt für n groß genug und dann gibt es das M. Zu den [mm] $a_n$ [/mm] weis man nichts.
Viele Grüße,
Reynir
|
|
|
|