Koordinatentransformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich möchte in einer Ebene ein lokales Koordinatensystem schaffen und 3d-Koordinaten auf dieses System transformieren. Gegegen ist die Normale und der Abstand der Ebene zum Ursprung. Jetzt müsste man grundsätzlich erstmal eine x- und y-Achse in der Ebene definieren und dann eine Transformatonsmatrix zw. dem globalen und dem lokalen formulieren. Die zu transformierenden Punkte liegen alle in der Ebene. Wie könnten diese beiden Schritte aussehen?
Viele Grüße
|
|
|
|
Du hast die Normale. Normiere sie, damit sie die Länge 1 bekommt. Finde nun einen Vektor, der senkrecht auf der Normale steht. Normiere auch diesen. Nun bilde das Kreuzprodukt von normierter Normale und dem neuen Vektor.
So kommst du zu drei neuen Einheitsvektoren, die alle senkrecht aufeinander stehen, und von denen zwei als Richtungsvektoren der Ebene taugen. Nennen wir die normalisierte Normale mal [mm] e_3, [/mm] die anderen beiden [mm] e_1 [/mm] und [mm] e_2. [/mm] Die drei zusammen spannen den Raum auf, jeden Vektor kannst du als Linearkombination der drei schreiben, die Vorfaktoren vor [mm] e_1, e_2 [/mm] und [mm] e_3 [/mm] werden die neuen Koordinaten. In der Ebene ist der Vorfaktor von [mm] e_3 [/mm] konstant, d.h. diese Koordinate kannst du einfach weglassen.
Transponiere [mm] e_1, e_2 [/mm] und [mm] e_3 [/mm] und schreibe sie übereinander als Matrix, damit hast du die Matrix, die die alten Koordianten in die neuen transformiert. Ggf. lass die dritte Zeile der Matrix weg, wenn du die dritte Koordinate nicht haben willst.
|
|
|
|
|
Kannst du den letzten Absatz Bitte mal genauer erläutern. Worauf beründet sich das? Gibt es eine Herleitung auf Wikipedia oder einer anderen Seite?
|
|
|
|
|
Da [mm] $e_1$, $e_2$ [/mm] und [mm] $e_3$ [/mm] aufeinander senkrecht stehen und normiert sind, lässt sich jeder Vektor $v$ als Linearkombination [mm] $\lambda_1 e_1 [/mm] + [mm] \lambda_2 e_2 [/mm] + [mm] \lambda_3 e_3$ [/mm] schreiben.
Die [mm] $\lambda_i$ [/mm] sind die neuen Koordinaten, die du haben willst.
Nun ist [mm] $e_i^t [/mm] * v [mm] =e_i^t [/mm] * [mm] (\lambda_1 e_1 [/mm] + [mm] \lambda_2 e_2 [/mm] + [mm] \lambda_3 e_3)=\lambda_i [/mm] $, denn die [mm] $e_i$ [/mm] sind senkrecht aufeinander und normiert, also [mm] $e_i^t *e_j=1$ [/mm] wenn $i=j$ und $0$, wenn $i$ ungleich $j$.
Aus [mm] $e_i^t [/mm] * v [mm] =\lambda_i [/mm] $ folgt nun, wenn du die drei [mm] $e_i^t$ [/mm] übereinander schreibst und so zu einer Matrix A zusammenfasst, dass $A*v$ gleich dem Vektor der drei [mm] $\lambda_i$ [/mm] ist, also der Vektor deiner neuen Koordinaten.
|
|
|
|
|
Danke für die weitere Erklärung. An das Skalarprodukt hatte ich nicht gedacht. War sehr einfach zu lösen.
|
|
|
|