Kreisradius < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Halli Hallo...
ich bin's mal wieder und natürlich auch mit einer neuen Frage
Ein im vierten Quadranten liegender Kreis k mit dem Mittelpunkt M berührt die Ordinatenachse im Punkt P(0 | -1) und außerdem den Graphen der Funktion f1 im Punkt B(xB | f1(xB)). Die Tangente t an den Graphen der Funktion f1 im Punkt B schneidet die Ordinatenachse im Punkt N (siehe Abbildung 1).
Begründen Sie, dass das Viereck PMBN ein Drachenviereck ist.
Ermitteln Sie einen Näherungswert für den Radius des Kreises k.
(siehe Skizze)
[Dateianhang nicht öffentlich]
[mm] f_1(x)=x*ln(x^2)
[/mm]
[mm] f_1(x_b)=x_b*ln(x_b^2)
[/mm]
Tangente: [mm] y=(ln(x_b^2)+2)x-2x_b [/mm] (hatte in Aufgabe einen Rechenfehler und kann deshalb keine weiteren konkreten Zahlen liefern, sondern meine Vorgehensweise)
dann Schnittpunkt mit y-Achse und Feststellung, dass Strecke Pm gleich Strecke MB sowie PN gleichlang wie BN ist, da der Abstand von M zu P und von M zu B gleich ist
Weiter bin ich aber nicht gekommen, klar die Lösungen kann ich mir hier anschauen: http://www.sn.schule.de/~matheabi/05/ma05luea.html
aber da weiß ich trotzdem nicht wie ich was zu machen habe...
danke für eure Hilfe....
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:36 Di 03.05.2005 | Autor: | Hexe |
Also nur mal zum Drachenviereck. Es ist klar das (1) MP=MB da beide Radien des Kreises sind. Weiterhin ist sowohl die y-Achse als auch die Gerade BN Tangente an den Kreis. Tangenten stehen immer senkrecht auf den zugehörigen Radien also sind die Winkel (2) MPN=NBM=90° Aus (1) und (2) folgt dann das NB=NP und MBNP Drachenviereck.
Das problem, das ich bei denem "Beweis" sehe ist, das es ein Beweis durch Ausrechnen ist und das ist immer ungeschickt.
Liebe Grüße
Hexe
|
|
|
|
|
...ist doch eigentlich auch logisch..also doch ein Brett vorm Kopf...
|
|
|
|
|
Liebe Juliane
Ich glaube, du wartest immer noch auf eine Berechnung des Radius. Also:
Die Funktion kann mit Hilfe des 3. Log.-gesetzes einfacher so geschrieben werden: f1(x)=2x ln x. Ihre Ableitung ist f1'(x)= 2(ln x + 1)
M hat die Koordinaten M(r/-1) und B die Koord. B(x/2x ln x). Ich schreibe x statt xB, ist einfacher und gibt in meinem Lösungsweg keine Konflikte.
Da eine Kreistangente immer senkrecht auf dem Berührradius (Radius zum Berührungspunkt der Tangente) steht, gilt: Steigung der Tangente mal Steigung des Berührradius = -1, also f1'(x) mal (yB - yM)/(xB - xM)=-1 oder
2(ln x + 1) * (2x ln x + 1)/(x - r) = -1 Mit (x - r) multipliziert ergibt
1) 2(ln x + 1)(2x ln x + 1) = r - x.
Eine 2. Gleichung erhalten wir, weil die Länge von BM gleich r ist:
(x - [mm] r)^{2}+(2x [/mm] ln x + [mm] 1)^{2} [/mm] = [mm] r^{2}; [/mm] ausquadriert und [mm] r^{2} [/mm] subtrahiert:
2) [mm] x^{2}-2xr [/mm] + [mm] 4x^{2} ln^{2}x [/mm] + 4x ln x + 1 =0.
(Für (ln [mm] x)^{2} [/mm] habe ich kürzer [mm] ln^{2}x [/mm] geschrieben.)
Nun kann man relativ leicht beide Gleichungen 1) und 2) nach r auflösen und dann gleichsetzen. Wir erhalten:
2(ln x + 1)(2x ln x + 1) + x = [mm] (x^{2} [/mm] + [mm] 4x^{2} ln^{2}x [/mm] + 4x ln x + 1)/(2x). Dies multiplizieren wir noch mit 2x:
4x(ln x + 1)(2x ln x + 1) + [mm] 2x^{2} [/mm] = [mm] x^{2} [/mm] + [mm] 4x^{2} ln^{2}x [/mm] + 4x ln x + 1.
Wenn du nun die Klammern ausmultiplizierst und gleiche Terme zusammenfasst, bekommst du
[mm] 4x^{2} ln^{2}x [/mm] + [mm] 8x^{2} [/mm] ln x + [mm] x^{2} [/mm] + 4x - 1 =0.
Dies ist eine transzendente Gleichung, die nur mit Näherungsmethoden gelöst werden kann, z. B. mit dem Newtonverfahren. Ein Taschenrechner mit einem Solver tut dies automatisch und liefert x [mm] \approx [/mm] 0.33088. Wenn wir das in Gleichung 1 (einfacher als 2) einsetzen, kriegen wir r [mm] \approx [/mm] 0.274
Zufrieden?
|
|
|
|
|
...vielen vielen Dank!
Endlich versteh ich es auch..
Tag gerettet !
|
|
|
|