Lage zweier Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:43 Mi 21.11.2007 | Autor: | Loon |
Aufgabe | Gegeben sind die Geraden g und h. Untersuchen Sie die Lage der Geraden g und h zueinander und berechnen Sie ihren Abstand.
g: [mm] \overrightarrow{OX} [/mm] = [mm] \vektor{-5\\2\\7} [/mm] + [mm] \lambda\vektor{3\\1\\-1}
[/mm]
h: geht durch A (12 | -7 | 8) und B (4 | -2 |12). |
Hallo,
zuerst habe ich die Gerade h in ihrer Parameterschreibweise dargestellt:
[mm] \overrightarrow{OX} [/mm] = [mm] \vektor{12\\-7\\8} [/mm] + [mm] \mu\vektor{-8\\5\\4}
[/mm]
Danach wollte ich das Skalarprodukt berechnen, um zu überprüfen, wie die Geraden zueinander liegen.
Allerdings weiß ich nicht, wie ich das Skalarprodukt hier berechne. Multipliziere ich jeweils nur die Richtungsvektoren?
Wie es dann weitergeht, weiß ich überhaupt nicht...
Ich würde mich über Tipps freuen!
Loon
|
|
|
|
Hi, Loon,
> Gegeben sind die Geraden g und h. Untersuchen Sie die Lage
> der Geraden g und h zueinander und berechnen Sie ihren
> Abstand.
>
> g: [mm]\overrightarrow{OX}[/mm] = [mm]\vektor{-5\\2\\7}[/mm] + [mm]\lambda\vektor{3\\1\\-1}[/mm]
> h: geht durch A (12 | -7 | 8) und B (4 | -2 |12).
> zuerst habe ich die Gerade h in ihrer Parameterschreibweise
> dargestellt:
>
> [mm]\overrightarrow{OX}[/mm] = [mm]\vektor{12\\-7\\8}[/mm] + [mm]\mu\vektor{-8\\5\\4}[/mm]
> Danach wollte ich das Skalarprodukt berechnen, um zu
> überprüfen, wie die Geraden zueinander liegen.
> Allerdings weiß ich nicht, wie ich das Skalarprodukt hier
> berechne. Multipliziere ich jeweils nur die
> Richtungsvektoren?
Was willst Du mit dem Skalarprodukt?!
Dass die beiden Geraden nicht parallel (uns somit auch nicht identisch) sind, erkennst Du sehr schnell daran, dass die beiden Richtungsvektoren keine Vielfachen voneinander sind.
Du musst nun also nur noch zeigen, ob sie sich in einem Punkt schneiden
oder ob sie windschief sind.
Das kannst Du auf 2 Arten tun:
(1) Wenn Du die "Determinante" kennst, kannst Du mit ihrer Hilfe sehr schnell zum Ziel kommen:
[mm] |\overrightarrow{AB}\quad \vec{u} \quad \vec{v} [/mm] | = 0 heißt dann nämlich: Schnittpunkt.
und
[mm] |\overrightarrow{AB}\quad \vec{u} \quad \vec{v} [/mm] | [mm] \not= [/mm] 0 heißt: windschief
(Dabei ist: [mm] \overrightarrow{AB} [/mm] der Verbindungsvektor der beiden Aufpunkte, [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] sind die Richtungsvektoren der Geraden.)
(2) Wenn Du die Determinante nicht kennst, musst Du die Geraden gleichsetzen. Wenn das daraus entstehende Gleichungssystem (3 Gleichungen, 2 Unbekannte!) lösbar ist, gibt es einen Schnittpunkt, wenn sich ein Widerspruch ergibt, sind die Geraden windschief.
Mach's erst mal bis dahin.
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Korrektur) kleiner Fehler | Datum: | 20:24 Mi 21.11.2007 | Autor: | mathemak |
> Hi, Loon,
>
> > Gegeben sind die Geraden g und h. Untersuchen Sie die Lage
> > der Geraden g und h zueinander und berechnen Sie ihren
> > Abstand.
> >
> > g: [mm]\overrightarrow{OX}[/mm] = [mm]\vektor{-5\\2\\7}[/mm] +
> [mm]\lambda\vektor{3\\1\\-1}[/mm]
> > h: geht durch A (12 | -7 | 8) und B (4 | -2 |12).
>
>
> > zuerst habe ich die Gerade h in ihrer Parameterschreibweise
> > dargestellt:
> >
> > [mm]\overrightarrow{OX}[/mm] = [mm]\vektor{12\\-7\\8}[/mm] +
> [mm]\mu\vektor{-8\\5\\4}[/mm]
>
>
>
> > Danach wollte ich das Skalarprodukt berechnen, um zu
> > überprüfen, wie die Geraden zueinander liegen.
> > Allerdings weiß ich nicht, wie ich das Skalarprodukt hier
> > berechne. Multipliziere ich jeweils nur die
> > Richtungsvektoren?
>
> Was willst Du mit dem Skalarprodukt?!
> Dass die beiden Geraden nicht parallel (uns somit auch
> nicht identisch) sind, erkennst Du sehr schnell daran, dass
> die beiden Richtungsvektoren keine Vielfachen voneinander
> sind.
>
Nun ja, allein aus der Tatsache, dass die Richtungsvektoren keine Vielfachen voneinander sind (nicht kollinear sind) kann man sofort auf nicht parallel und damit auch auf nicht identisch schließen.
Doch Vorsicht: Wenn die Vielfachen linear abhängig sind, können zwei Fälle vorliegen. Parallel und verschieden oder parallel und identisch. Der Differenzvektor der Aufpunkte entscheidet. Ist der ein Vielfaches einer der beiden Richtungsvektoren, dann sind die Geraden identisch.
Nur als kleine Anmerkung.
> Du musst nun also nur noch zeigen, ob sie sich in einem
> Punkt schneiden
> oder ob sie windschief sind.
>
> Das kannst Du auf 2 Arten tun:
> (1) Wenn Du die "Determinante" kennst, kannst Du mit ihrer
> Hilfe sehr schnell zum Ziel kommen:
> [mm]|\overrightarrow{AB}\quad \vec{u} \quad \vec{v}[/mm] | = 0
> heißt dann nämlich: Schnittpunkt.
> und
> [mm]|\overrightarrow{AB}\quad \vec{u} \quad \vec{v}[/mm] | [mm]\not=[/mm] 0
> heißt: windschief
>
> (Dabei ist: [mm]\overrightarrow{AB}[/mm] der Verbindungsvektor der
> beiden Aufpunkte, [mm]\vec{u}[/mm] und [mm]\vec{v}[/mm] sind die
> Richtungsvektoren der Geraden.)
>
> (2) Wenn Du die Determinante nicht kennst, musst Du die
> Geraden gleichsetzen. Wenn das daraus entstehende
> Gleichungssystem (3 Gleichungen, 2 Unbekannte!) lösbar ist,
> gibt es einen Schnittpunkt, wenn sich ein Widerspruch
> ergibt, sind die Geraden windschief.
>
> Mach's erst mal bis dahin.
>
> mfG!
> Zwerglein
Gruß
mathemak
|
|
|
|