www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Laplace Rücktransformation
Laplace Rücktransformation < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Rücktransformation: Doppelte(komplexe)Nullstellen
Status: (Frage) beantwortet Status 
Datum: 14:46 Mo 22.06.2015
Autor: smoot

Hallo zusammen,
ich möchte folgende Funktion rücktransformieren, via Partialbruchzerlegung:

L(u)(s) = [mm] \bruch{2(s+1)}{(s^{2}+2s+2)^{2}} [/mm]


Durch Pq- Formel: [mm] s^{2}+2s+2 [/mm] = 0 => s1/2 = -1 [mm] \pm [/mm] j


<=> [mm] \bruch{2}{(s+1+j)(s+1-j)(s+1+j)(s+1-j)} [/mm]

<=> [mm] \bruch{A}{(s+1+j)}+\bruch{B}{(s+1-j)}+\bruch{C}{(s+1+j)}+\bruch{D}{(s+1-j)} [/mm]

Meine Frage:

Wie muss ich jetzt vorgehen, um meine Nenner Nullstellen zusammenzufassen? Enthält der Term dann weiterhin vier Konstanten die zu bestimmen sind oder reichen dann für die weitere Rechnung zwei aus, da die beiden Nullstellen doppelte Nullstellen sind?

Vielen Dank für eure Hilfe.

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
Laplace Rücktransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mo 22.06.2015
Autor: fred97

Die Nullstellen von $ [mm] s^{2}+2s+2 [/mm] $ sind

   [mm] $s_1=-1+j$ [/mm] und [mm] $s_2=-1-j$ [/mm]

Dann ist [mm] (s^{2}+2s+2)^2=(s-s_1)^2*(s-s_2)^2. [/mm] Damit lautet der Ansatz

   $ [mm] \bruch{2(s+1)}{(s^{2}+2s+2)^{2}}=\bruch{A}{s-s_1} +\bruch{B}{(s-s_1)^2}+\bruch{C}{s-s_2}+\bruch{D}{(s-s_2)^2}$ [/mm]

FRED


Bezug
                
Bezug
Laplace Rücktransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mo 22.06.2015
Autor: smoot

Kann es sein das ich auf diesem Weg nicht zum Ziel gelange?

Denn wenn ich den Term auflöse bzw. die Konstanten bestimmen möchte bekomme ich:

Ausgehend von:

[mm] A(s+1+j)(s-1-j)^{2} [/mm] + [mm] B(s-1-j)^{2} [/mm] + [mm] C(s-1-j)(s+1+j)^{2} [/mm] + [mm] D(s+1+j)^{2} [/mm]

für -1 + j;

8j A + 4 B + 8 C - 4 D = 2j

und

für -1 - j;

B = - [mm] \bruch{1}{4} [/mm]

Mein Problem ist nun das ich mit der Anzahl der Gleichungen nicht alle Unbekannten bestimmen kann.





Bezug
                        
Bezug
Laplace Rücktransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 23.06.2015
Autor: Chris84


> Kann es sein das ich auf diesem Weg nicht zum Ziel
> gelange?
>  
> Denn wenn ich den Term auflöse bzw. die Konstanten
> bestimmen möchte bekomme ich:
>  
> Ausgehend von:
>  
> [mm]A(s+1+j)(s-1-j)^{2}[/mm] + [mm]B(s-1-j)^{2}[/mm] + [mm]C(s-1-j)(s+1+j)^{2}[/mm] +
> [mm]D(s+1+j)^{2}[/mm]
>  
> für -1 + j;
>  
> 8j A + 4 B + 8 C - 4 D = 2j
>  
> und
>  
> für -1 - j;
>  
> B = - [mm]\bruch{1}{4}[/mm]
>  
> Mein Problem ist nun das ich mit der Anzahl der Gleichungen
> nicht alle Unbekannten bestimmen kann.
>  
>
>
>
>  

Wenn ich das richtig sehe, setzt du fuer $s$ die Nullstellen ein, richtig?

Hast du es schonmal allgemeiner mit Koeffizientenvergleich versucht?

Bezug
                                
Bezug
Laplace Rücktransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 23.06.2015
Autor: smoot

Ja ich habe versucht die Nullstellen einzusetzen.
Die Idee mit dem Koeffizienten vergleich kam mir auch schon, jedoch fehlt mir die Erfahrung mit diesem Verfahren um brauchbare Gleichungen aufzustellen.

Könntest du das Verfahren bezüglich dieser Aufgabe einmal näher erläutern?

Bezug
                                        
Bezug
Laplace Rücktransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 23.06.2015
Autor: rmix22


> Ja ich habe versucht die Nullstellen einzusetzen.

Du könntest mit der Methode auch weiter machen. Da du weniger verschiedene Nullstellen zur Verfügung hast, als der Grad des Nennerpolynoms beträgt, kannst du dazu übergehen, beliebige Zahlen für s einzusetzen. Du könntest also in deinem Fall auch dein Glück mit s=0 und s=1 versuchen und erhältst so zwei weitere Gleichungen in A, B C und D.

Allerdings ist doch dein Ziel die Rücktransformation in den Zeitbereich, oder?
Ist es wirklich expliziter Teil der Aufgabenstellung, dass das mit Partialbruchzerlegung im Komplexen erfolgen soll? Ich vermute doch wohl eher nicht, oder?

Jeder halbwegs brauchbaren Laplace Trafo-Tabelle entnimmt man

$t*sin(k*t) [mm] \;\circ\frac{\quad}{\quad}\bullet\; \frac{2ks}{{\left(s^2+k^2\right)}^2}$ [/mm]

und den Dämpfungssatz

[mm] $e^{-at}\cdot f(t)\;\circ\frac{\quad}{\quad}\bullet\; [/mm] F(s+a)$

(Den Laplace-Knochen bring ich hier nicht besser hin)

Jetzt musst du doch deinen Ausdruck im Bildbereich nur ganz geringfügig umformen

[mm] $\frac{2\cdot(s+1)}{\left(s^2+2s+2\right)^2}=\frac{2\cdot(s+1)}{\left((s+1)^2+1\right)^2} [/mm]

um zu erkennen, dass du obiges mit $a=1$ und $k=1$ vorliegen hast und die Rücktransformierte im Zeitbereich daher

[mm] $e^{-t}\cdot [/mm] t [mm] \cdot [/mm] sin(t)$

ist.

Gruß RMix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]